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Preface

Volume V of the Transactions on Rough Sets (TRS) is dedicated to the monu-
mental life and work of Zdzis�law Pawlak1. During the past 35 years, since the
introduction of knowledge description systems in the 1970s, the theory and ap-
plications of rough sets have grown rapidly. This volume continues the tradition
begun with earlier volumes of the TRS series and introduces a number of new
advances in the foundations and application of rough sets. These advances have
profound implications in a number of research areas such as adaptive learning,
approximate reasoning and belief systems, approximation spaces, Boolean rea-
soning, classification methods, classifiers, concept analysis, data mining, decision
logic, decision rule importance measures, digital image processing, recognition
of emotionally-charged gestures in animations, flow graphs, Kansei engineering,
movie sound track restoration, multicriteria decision analysis, relational informa-
tion systems, rough-fuzzy sets, rough measures, signal processing, variable pre-
cision rough set model, and video retrieval. It can be observed from the papers
included in this volume that research concerning the foundations and applications
of rough sets remains an intensely active research area worldwide. A total of 37
researchers from 8 countries are represented in this volume, the countries being,
Canada, India, P.R. China, Poland, Japan, Taiwan, UK and the USA.

A capsule view of the life and work of Zdzis�law Pawlak is included in an article
at the beginning of this volume. During his lifetime, the research interests of
Pawlak were rich and varied. His research ranged from his pioneering work on
knowledge description systems and rough sets during the 1970s and 1980s as well
as his work on the design of computers, information retrieval, modeling conflict
analysis and negotiation, genetic grammars and molecular computing. Added to
that was Pawlak’s lifelong interest in painting, photography and poetry. During
his lifetime, Pawlak nurtured worldwide interest in approximation, approximate
reasoning and rough set theory and its applications. Evidence of the influence
of Pawlak’s work can been seen in the growth in the rough-set literature that
now includes over 4000 publications as well as the growth and maturity of the
International Rough Set Society.

TRS V also includes 15 papers that explore the theory of rough sets as well
as new applications of rough sets. In addition, this volume of the TRS includes
a complete monograph on rough sets and approximate Boolean reasoning sys-
tems that includes both the foundations as well as the applications of data
mining, by Hung Son Nguyen. New developments in the foundations of rough
sets are represented by a number of papers in this volume, namely, Rough Truth,
Consistency and Belief Change (Mohua Banerjee), Rough Set Approximations
in Formal Concept Analysis (Yiyu Yao and Yaohua Chen), Rule Importance
Measures (Jiye Li and Nick Cercone), Generalized Rough-Fuzzy Approximation
Operators (Wei-Zhi Wu), Rough Set Flow Graphs (Cory Butz, W. Yan, and

1 Prof. Pawlak passed away on 7 April 2006.
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B. Yang), Vague Concept Approximation and Adaptive Learning (Jan Bazan,
Andrzej Skowron, and Roman Świniarski), and Arrow Decision Logic (Tuan-
Fang Fan, Duen-Ren Liu, and Gwo-Hshiung Tzeng). Applications of rough sets
are also represented by the following papers in this volume: Matching 2D Im-
age Segments with Genetic Algorithms and Approximations Spaces (Maciej
Borkowski and James Peters), Rough Set-Based Application to Recognition of
Emotionally-Charged Animated Characters Gestures (Bożena Kostek and Piotr
Szczuko), Movie Sound Track Restoration (Andrzej Czyżewski, Marek Dziubin-
ski, Lukasz Litwic, and Przemyslaw Maziewski), Multimodal Classification Case
Studies (Andrzej Skowron, Hui Wang, Arkadiusz Wojna, and Jan Bazan ), P300
Wave Detection Using Rough Sets (Sheela Ramanna and Reza Fazel Rezai),
Motion-Information-Based Video Retrieval Using Rough Pre-classification (Zhe
Yuan, Yu Wu, Guoyin Wang, and Jianbo Li), Variable Precision Baysian Rough
Set Model and Its Application to Kansei Engineering (Tatsuo Nishino, Mitsuo
Nagamachi, and Hideo Tanaka).

The Editors of this volume extend their hearty thanks to the reviewers of the
papers that were submitted to this TRS volume: Mohua Banerjee, Jan Bazan,
Teresa Beauboeuf, Maciej Borkowski, Gianpiero Cattaneo, Nick Cercone, Davide
Cuicci, Andrzej Czyżewski, Jitender Deogun, Ivo Düntsch, Reza Fazel-Rezai,
Anna Gomolińska, Jerzy Grzyma�la-Busse, Masahiro Iniguichi, Jouni Järvinen,
Mieczys�law K�lopotek, Beata Konikowska, Bożena Kostek, Marzena Kryszkiewicz,
Rafa�l Latkowski, Churn-Jung Liau, Pawan Lingras, Jan Ma�luszyński, Benedetto
Matarazzo, Micha�l Miko�lajczyk, Mikhail Moshkov, Maria Nicoletti, Hoa Nguyen,
Son Nguyen, Piero Pagliani, Sankar Pal, Witold Pedrycz, Lech Polkowski, Anna
Radzikowska, Vijay Raghavan, Sheela Ramanna, Zbigniew Raś, Dominik Ślȩzak,
Jerzy Stefanowski, Jaros�law Stepaniuk, Zbigniew Suraj, Roman Świniarski, Piotr
Synak, Marcin Szczuka, Daniel Vanderpooten, Dimiter Vakarelov, Alicja Wiec-
zorkowska, Arkadiuz Wojna, Marcin Wolski, Jakub Wróblewski, Dan Wu, Wei-
Zhi Wu, Yiyu Yao, and Wojciech Ziarko.

This issue of the TRS was made possible thanks to the reviewers as well as to
the laudable efforts of a great many generous persons and organizations. The ed-
itors and authors of this volume also extend an expression of gratitude to Alfred
Hofmann, Ursula Barth, Christine Günther and the other LNCS staff at Springer
for their support in making this volume of the TRS possible. In addition, the ed-
itors of this volume extend their thanks to Dominik Ślȩzak for his help and sug-
gestions concerning extensions of selected RSFDGrC 2005 papers included in this
volume of the TRS. We anticipate that additional RSFDGrC 2005 papers now
being reviewed will be included in future volumes of the TRS. We also extend our
thanks to Marcin Szczuka for his consummate skill and care in the compilation
of this volume. The Editors of this volume have been supported by the Ministry
for Scientific Research and Information Technology of the Republic of Poland,
research grant No. 3T11C00226, and the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) research grant 185986 respectively.

June 2006 James F. Peters
Andrzej Skowron
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A. Czyżewski
J.S. Deogun
D. Dubois
I. Duentsch
S. Greco
J.W. Grzyma�la-Busse
M. Inuiguchi
J. Järvinen
D. Kim
J. Komorowski
C.J. Liau
T.Y. Lin
E. Menasalvas
M. Moshkov
T. Murai

M. do C. Nicoletti
H.S. Nguyen
S.K. Pal
L. Polkowski
H. Prade
S. Ramanna
R. S�lowiński
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Zdzis�law Pawlak: Life and Work

1926-2006

James F. Peters and Andrzej Skowron

In the history of mankind, Professor Zdzis�law
Pawlak, Member of the Polish Academy of
Sciences, will be remembered as a great hu-
man being with exceptional humility, wit and
kindness as well as an extraordinarily innova-
tive researcher with exceptional stature. His
legacy is rich and varied. Pawlak’s research
contributions have had far-reaching implica-
tions inasmuch as his works are fundamental
in establishing new perspectives for scientific
research in a wide spectrum of fields.

Preamble

Professor Pawlak’s most widely recognized contribution is his incisive approach
to classifying objects with their attributes (features) and his introduction of ap-
proximation spaces, which establish the foundations of granular computing and
provide frameworks for perception and knowledge discovery in many areas. He
was with us only for a short time and, yet, when we look back at his accom-
plishments, we realize how greatly he has influenced us with his generous spirit
and creative work in many areas such as approximate reasoning, intelligent sys-
tems research, computing models, mathematics (especially, rough set theory),
molecular computing, pattern recognition, philosophy, art, and poetry. This ar-
ticle attempts to give a vignette that highlights some of Pawlak’s remarkable
accomplishments. This vignette is limited to a brief coverage of Pawlak’s work
in rough set theory, molecular computing, philosophy, painting and poetry. De-
tailed coverage of these as well as other accomplishments by Pawlak is outside
the scope of this commemorative article.

1 Introduction

This article commemorates the life, work and creative genius of Zdzis�law Pawlak.
He is well-known for his innovative work on the classification of objects by means

J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets V, LNCS 4100, pp. 1–24, 2006.
© Springer-Verlag Berlin Heidelberg 2006



2 J.F. Peters and A. Skowron

of attributes (features) [25] and his discovery of rough set theory during the early
1980s (see, e.g., [11,22,25,27]). Since the introduction of rough set theory, there
have been well over 4000 publications on this theory and its applications (see,
e.g., [6, 35, 36, 37, 39, 71] and Section 12).

One can also observe a number of other facets of Pawlak’s life and work that
are less known, namely, his pioneering work on genetic grammars and molecular
computing, his interest in philosophy, his lifelong devotion to painting landscapes
and waterscapes depicting the places he visited, his interest and skill in photog-
raphy, and his more recent interests in poetry and methods of solving mysteries
by fictional characters such as Sherlock Holmes. During his life, Pawlak con-
tributed to the foundations of granular computing, intelligent systems research,
computing models, mathematics (especially, rough set theory), molecular com-
puting, knowledge discovery as well as knowledge representation, and pattern
recognition.

This article attempts to give a brief vignette that highlights some of Pawlak’s
remarkable accomplishments. This vignette is limited to a brief coverage of
Pawlak’s works in rough set theory, molecular computing, philosophy, paint-
ing and poetry. Detailed coverage of these as well as other accomplishments by
Pawlak is outside the scope of this commemorative article.

The article is organized as follows. A brief biography of Zdzis�law Pawlak is
given in Sect. 2. Some of the very basic ideas of Pawlak’s rough set theory are
presented in Sect. 3. This is followed by a brief presentation of Pawlak’s introduc-
tion of a genetic grammar and molecular computing in Sect. 8. Pawlak’s more
recent reflections concerning philosophy (especially, the philosophy of mathe-
matics) are briefly covered in Sect. 9. Reflections on Pawlak’s lifelong interest
in painting and nature as well as a sample of paintings by Pawlak and a poem
coauthored by Pawlak, are presented in Sect. 10.

2 Zdzis�law Pawlak: A Brief Biography

Zdzis�law Pawlak was born on 10 November 1926 in �Lódź, 130 km south-west from
Warsaw, Poland [41]. In 1947, Pawlak began studying in the Faculty of Electrical
Engineering at �Lódź University of Technology, and in 1949 continued his studies
in the Telecommunication Faculty at Warsaw University of Technology. Starting
in the early 1950s and continuing throughout his life, Pawlak painted the places
he visited, especially landscapes and waterscapes reflecting his observations in
Poland and other parts of the world. This can be seen as a continuation of the
work of his father, who was fond of wood carving and who carved a wooden
self-portrait that was kept in Pawlak’s study. He also had extraordinary skill in
mathematical modeling in the organization of systems (see, e.g., [20,24,28]) and
in computer systems engineering (see, e.g., [16, 17, 18, 19, 21]). During his early
years, he was a pioneer in the designing computing machines. In 1950, Pawlak
presented the first project of a computer called GAM 1. He completed his M.Sc.
in Telecommunication Engineering in 1951. Pawlak’s publication in 1956 on a
new method for random number generation was the first article in informatics
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1.1: Interior of UMC1 1.2: UMC1 Prototype

Fig. 1. Snapshots of the UMC1 Computer System

published abroad by a researcher from Poland [13]. In 1958, Pawlak completed
his doctoral degree from the Institute of Fundamental Technological Research at
the Polish Academy of Science with a Thesis on Applications of Graph Theory
to Decoder Synthesis. In 1961, Pawlak was also a member of a research team
that constructed one of the first computers in Poland called UMC 1 (see Fig. 1).

The original arithmetic for the UMC1 computer system with base “-2” was due
to Pawlak [14]. He received his habilitation from the Institute of Mathematics at
the Polish Academy of Sciences in 1963. In his habilitation entitled Organization
of Address-Less Machines, Pawlak proposed and investigated parenthesis-free
languages, a generalization of polish notation introduced by Jan �Lukasiewicz
(see, e.g., [16, 17]).

In succeeding years, Pawlak worked at the Institute of Mathematics of Warsaw
University and, in 1965, introduced foundations for modeling DNA [15] in what
has come to be known as molecular computing [3, 15]. He also proposed a new
formal model of a computing machine known as the Pawlak machine [21,23] that
is different from the Turing machine and from the von Neumann machine. In
1973, he introduced knowledge representation systems [22] as part of his work on
the mathematical foundations of information retrieval (see, e.g., [11,22]). In the
early 1980s, he was part of a research group at the Institute of Computer Science
of the Polish Academy of Sciences, where he discovered rough sets and the idea
of classifying objects by means of their attributes [25], which was the basis for
extensive research in rough set theory during the 1980s (see, e.g., [7,8,12,26,27,
29]). During the succeeding years, Pawlak refined and amplified the foundations
of rough sets and their applications, and nurtured worldwide research in rough
sets that has led to over 4000 publications (see, e.g., [39]). In addition, he did
extensive work on the mathematical foundations of information systems during
the early 1980s (see, e.g., [24, 28]). He also invented a new approach to conflict
analysis (see, e.g., [30, 31, 33, 34]).
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During his later years, Pawlak’s interests were very diverse. He developed a
keen interest in philosophy, especially in the works by �Lukasiewicz (logic and
probability), Leibniz (identify of indiscernibles), Frege (membership, sets), Rus-
sell (antinomies), and Leśniewski (being a part)). Pawlak was also interested in
the works of detective fiction by Sir Arthur Conan Doyle (especially, Sherlock
Holmes’ fascination with data as a basis for solving mysteries) (see, e.g., [35]).

Finally, Zdzis�law Pawlak gave generously of his time and energy to help oth-
ers. His spirit and insights have influenced many researchers worldwide. During
his life, he manifested an extraordinary talent for inspiring his students and col-
leagues as well as many others outside his immediate circle. For this reason, he
was affectionately known to some of us as Papa Pawlak.

3 Rough Sets

If we classify objects by means of attributes,

exact classification is often impossible.

– Zdzis�law Pawlak, January 1981.

A brief presentation of the foundations of rough set theory is given in this section.
Rough set theory has its roots in Zdzis�law Pawlak’s research on knowledge rep-
resentation systems during the early 1970s [22]. Rather than attempt to classify
objects exactly by means of attributes (features), Pawlak considered an approach
to solving the object classification problem in a number of novel ways. First, in
1973, he formulated knowledge representation systems (see, e.g., [11,22]). Then,
in 1981, Pawlak introduced approximate descriptions of objects and considered
knowledge representation systems in the context of upper and lower classifica-
tion of objects relative to their attribute values [25,26]. We start with a system
S = (X,A, V, σ), where X is a non-empty set of objects, A is a set of attributes,
V is a union of sets Va of values associated with each a ∈ A, and σ is called a
knowledge function defined as the mapping σ : X ×A → V , where σ(x, a) ∈ Va

for every x ∈ X and a ∈ A. The function σ is referred to as knowledge func-
tion about objects from X . The set X is partitioned into elementary sets that
later were called blocks, where each elementary set contains those elements of
X which have matching attribute values. In effect, a block (elementary set) rep-
resents a granule of knowledge (see Fig. 2.2). For example, for any B ⊆ A the
B-elementary set for an element x ∈ X is denoted by B(x), which is defined by

B(x) = {y ∈ X | ∀a ∈ B σ(x, a) = σ(y, a)} (1)

Consider, for example, Fig. 2.1 which represents a system S containing a set X of
colored circles and a feature set A that contains only one attribute, namely, color.
Assume that each circle in X has only one color. Then the set X is partitioned
into elementary sets or blocks, where each block contains circles with the same
color. In effect, elements of a set B(x) ⊆ X in a system S are classified as
indiscernible if they are indistinguishable by means of their feature values for
any a ∈ B. A set of indiscernible elements is called an elementary set [25]. Hence,
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2.1: Blocks of Objects

The universe of objects

2.2: Sample Set Approximation

Fig. 2. Rudiments of Rough Sets

any subset B ⊆ A determines a partition {B(x) : x ∈ X} of X . This partition
defines an equivalence relation Ind(B) on X called an indiscernibility relation
such that xInd(B)y if and only if y ∈ B(x) for every x, y ∈ X . Assume that
Y ⊆ X and B ⊆ A, and consider an approximation of the set Y by means of the
attributes in B and B-indiscernible blocks in the partition of X . The union of
all blocks that constitute a subset of Y is called the lower approximation of Y
(usually denoted by B∗Y ), representing certain knowledge about Y . The union
of all blocks that have non-empty intersection with the set Y is called the upper
approximation of Y (usually denoted by B∗Y ), representing uncertain knowledge
about Y . The set BNB(Y ) = B∗Y − B∗Y is called the B-boundary of the set
Y . In the case where BNB(Y ) is non-empty, the set Y is a rough (imprecise)
set. Otherwise, the set Y is a crisp set. This approach to classification of objects
in a set is represented graphically in Fig. 2.2, where the region bounded by the
ellipse represents a set Y , the darkened blocks inside Y represent B∗Y , the gray
blocks represent the boundary region BNB(Y ), and the gray and the darkened
blocks taken together represent B∗Y .

Consequences of this approach to the classification of objects by means of
their feature values have been remarkable and far-reaching. Detailed accounts of
the current research in rough set theory and its applications are available, e.g.,
in [35, 36, 37] (see also Section 12).

4 Approximation

Some categories (subsets of objects) cannot be

expressed exactly by employing available knowledge.

Hence, we arrive at the idea of approximation

of a set by other sets.

–Zdzis�law Pawlak, 1991.
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One of the most profound, very important notions underlying rough set theory
is approximation. In general, an approximation is defined as the replacement
of objects by others that resemble the original objects in certain respects [4].
For example, consider a universe U containing objects representing behaviors of
agents. In that case, we can consider blocks of behaviors in the partition U/R,
where the behaviors within a block resemble (are indiscernible from) each other
by virtue of their feature values. Then any subset X of U can be approximated
by blocks that are either proper subsets of X (lower approximation of the set
X denoted RX) or by blocks having one or more elements in common with X
(upper approximation of the set X denoted RX)1. In rough set theory, the fo-
cus is on approximating one set of objects by means of another set of objects
based on the feature values of the objects [32]. The lower approximation op-
erator R has properties that correspond closely to properties of what is known
as the Π0 topological interior operator [27, 77]. Similarly, the upper approxi-
mation operator R has properties that correspond closely to properties of the
Π0 topological closure operator [27, 77]. It was observed in [27] that the key to
the rough set approach is provided by the exact mathematical formulation of
the concept of approximative (rough) equality of sets in a given approximation
space.

5 Approximation Spaces

The key to the presented approach

is provided by the exact mathematical formulation,

of the concept of approximative (rough) equality

of sets in a given approximation space.

–Zdzis�law Pawlak, 1982.

In [32], an approximation space is represented by the pair (U,R), where U is a
universe of objects, and R ⊆ U × U is an indiscernibility relation (denoted Ind
as in Sect. 3) defined by an attribute set (i.e., R = Ind(A) for some attribute
set A). In this case, R is an equivalence relation. Let [x]R denote an equivalence
class of an element x ∈ U under the indiscernibility relation R, where [x]R =
{y ∈ U : xRy}.

In this context, R-approximations of any set X ⊆ U are based on the exact
(crisp) containment of sets. Then set approximations are defined as follows:

• x ∈ U belongs with certainty to X ⊆ U (i.e., x belongs to the R-lower
approximation of X), if [x]R ⊆ X .

• x ∈ U possibly belongs X ⊆ U (i.e., x belongs to the R-upper approximation
of X), if [x]R ∩X �= �.

1 In more recent years, the notation R∗X, R∗X has been often used (see, e.g., Sect. 3)
to denote lower and upper approximation, respectively, since this notation is more
“typewriter” friendly.
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• x ∈ U belongs with certainty neither to the X nor to U −X (i.e., x belongs
to the R-boundary region of X), if [x]R ∩ (U −X) �= � and [x]R ∩X �= �.

Several generalizations of the above approach have been proposed in the lit-
erature (see, e.g., [35, 36, 37] and Section 12). In particular, in some of these
approaches, set inclusion to a degree is used instead of the exact inclusion.

6 Generalizations of Approximation Spaces

Several generalizations of the classical rough set approach based on approxi-
mation spaces defined as pairs of the form (U,R), where R is the equivalence
relation (called an indiscernibility relation) on the non-empty set U , have been
reported in the literature. Let us mention two of them.

A generalized approximation space can be defined by a tuple GAS = (U,N, ν)
where N is a neighborhood function defined on U with values in the powerset
P(U) of U (i.e., N(x) is the neighborhood of x) and ν is the overlap function
defined on the Cartesian product P(U)×P(U) with values in the interval [0, 1]
measuring the degree of overlap of sets. The lower GAS∗ and upper GAS∗ ap-
proximation operations can be defined in a GAS by Eqs. 2 and 3.

GAS∗(X) = {x ∈ U : ν(N(x), X) = 1}, (2)
GAS∗(X) = {x ∈ U : ν(N(x), X) > 0}. (3)

In the standard case, N(x) equals the equivalence class B(x) or block of the
indiscernibility relation Ind(B) for a set of features B. In the case where R is
a tolerance (similarity) relation2, τ ⊆ U × U , we take N(x) = {y ∈ U : xτy},
i.e., N(x) equals the tolerance class of τ defined by x. The standard inclusion
relation νSRI is defined for X,Y ⊆ U by Eq. 4.

νSRI (X,Y ) =

{
|X∩Y |
|Y | , if Y �= ∅,

1, otherwise.
(4)

For applications, it is important to have some constructive definitions of N and ν.
One can consider another way to define N(x). Usually together with a GAS,

we consider some set F of formulas describing sets of objects in the universe U
of the GAS defined by semantics ‖ ·‖GAS , i.e., ‖α‖GAS ⊆ U for any α ∈ F. Now,
one can take the set the neighborhood function as shown in Eq. 5.

NF (x) = {α ∈ F : x ∈ ‖α‖GAS}, (5)

and N(x) = {‖α‖GAS : α ∈ NF (x)}. Hence, more general uncertainty functions
having values in P(U) can be defined and as a consequence different definitions

2 Recall that a tolerance is a binary relation R ⊆ U × U on a set U having the
reflexivity and symmetry properties, i.e., xRx for all x ∈ U and xRy implies yRx
for all x, y ∈ U .
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of approximations are considered. For example, one can consider the following
definitions of approximation operations in GAS defined in Eqs. 6 and 7.

GAS◦(X) = {x ∈ U : ν(Y,X) = 1 for some Y ∈ N(x)}, (6)
GAS◦(X) = {x ∈ U : ν(Y,X) > 0 for any Y ∈ N(x)}. (7)

There are also different forms of rough inclusion functions. Let us consider two
examples.

In the first example of a rough inclusion function, a threshold t ∈ (0, 0.5) is
used to relax the degree of inclusion of sets. The rough inclusion function νt is
defined by Eq. 8.

νt (X,Y ) =

⎧⎨⎩
1, if νSRI (X,Y ) ≥ 1 − t,

νSRI(X,Y )−t
1−2t , if t ≤ νSRI (X,Y ) < 1 − t,

0, if νSRI (X,Y ) ≤ t.

(8)

One can obtain approximations considered in the variable precision rough set
approach (VPRSM) by substituting in (2)-(3) the rough inclusion function νt

defined by (8) instead of ν, assuming that Y is a decision class and N(x) = B(x)
for any object x, where B is a given set of attributes.

Another example of application of the standard inclusion was developed by
using probabilistic decision functions.

The rough inclusion relation can be also used for function approximation
and relation approximation. In the case of function approximation the inclusion
function ν∗ for subsets X,Y ⊆ U ×U , where X,Y ⊆ R and R is the set of reals,
is defined by Eq. 9.

ν∗ (X,Y ) =

{
card(π1(X∩Y ))

card(π1(X)) , if π1(X) �= ∅,
1, if π1(X) = ∅,

(9)

where π1 is the projection operation on the first coordinate. Assume now, that
X is a cube and Y is the graph G(f) of the function f : R −→ R. Then, e.g.,
X is in the lower approximation of f if the projection on the first coordinate of
the intersection X ∩G(f) is equal to the projection of X on the first coordinate.
This means that the part of the graph G(f) is “well” included in the box X ,
i.e., for all arguments that belong to the box projection on the first coordinate
the value of f is included in the box X projection on the second coordinate.

The approach based on inclusion functions has been generalized to the rough
mereological approach. The inclusion relation xμry with the intended meaning x
is a part of y to a degree at least r has been taken as the basic notion of the rough
mereology being a generalization of the Leśniewski mereology [9,10]. Research on
rough mereology has shown the importance of another notion, namely closeness
of complex objects (e.g., concepts). This can be defined by xclr,r′y if and only
if xμry and yμr′x.
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Rough mereology offers a methodology for synthesis and analysis of objects
in a distributed environment of intelligent agents, in particular, for synthesis
of objects satisfying a given specification to a satisfactory degree or for control
in such a complex environment. Moreover, rough mereology has been recently
used for developing the foundations of the information granule calculi, aiming
at formalization of the Computing with Words paradigm, recently formulated
by Lotfi Zadeh [42]. More complex information granules are defined recursively
using already defined information granules and their measures of inclusion and
closeness. Information granules can have complex structures like classifiers or
approximation spaces. Computations on information granules are performed to
discover relevant information granules, e.g., patterns or approximation spaces
for complex concept approximations.

Usually families of approximation spaces labeled by some parameters are con-
sidered. By tuning such parameters according to chosen criteria (e.g., minimal
description length), one can search for the optimal approximation space for a
concept description.

7 Conflict Analysis and Negotiations

Conflict analysis and resolution play an important role in business, governmental,
political and legal disputes, labor-management negotiations, military operations
and others. To this end many mathematical formal models of conflict situations
have been proposed and studied.

Various mathematical tools, e.g., game theory, graph theory, topology, dif-
ferential equations and others, have been used for that purpose. In fact, as yet
there is no “universal” theory of conflicts. Instead, mathematical models of con-
flict situations are strongly domain dependent.

Zdzis�law Pawlak introduced still another approach to conflict analysis, based
on some ideas of rough set theory [30, 31, 33, 34, 37]. Pawlak’s model is simple
enough for easy computer implementation and is adequate for many real-life
applications.

The approach is based on the conflict relation in data. Formally, the conflict
relation can be seen as a negation (not necessarily, classical) of the indiscerni-
bility relation which was used by Pawlak as a basis of rough set theory. Thus,
indiscernibility and conflict are closely related from a logical point of view. It
turns out that the conflict relation can be used in conflict analysis studies.

8 Molecular Computing

The understanding of protein structure and

the processes of their syntheses is fundamental

for the considerations of the life problem.

– Zdzis�law Pawlak, 1965.

Zdzis�law Pawlak was one of the pioneers of a research area known as molecular
computing (see, e.g., ch. 6 on Genetic Grammars published in 1965 [15]). He
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searched for grammars generating compound biological structures from simpler
ones, e.g., proteins from amino acids. He proposed a generalization of the tra-
ditional grammars used in formal language theory. For example, he considered
the construction of mosaics on a plane from some elementary mosaics by using
some production rules for the composition. He also presented a language for
linear representation of mosaic structures. By introducing such grammars one
can better understand the structure of proteins and the processes that lead to
their synthesis. Such grammars result in real-life languages that characterize the
development of living organisms. During the 1970s, Pawlak was interested in
developing a formal model of deoxyribonucleic acid (DNA), and he proposed a
formal model for the genetic code discovered by Crick and Watson. Pawlak’s
model is regarded by many as the first complete model of DNA. This work on
DNA by Pawlak has been cited by others (see, e.g., [3, 41]).

9 Philosophy

No doubt the most interesting proposal was given

by the Polish logician Stanis�law Lesniewski,

who introduced the relation of “being a part”

instead of the membership relation between elements

and sets employed in classical set theory.

– Zdzis�law Pawlak, 2006.

For many years, Zdzis�law Pawlak had an intense interest in philosophy, especially
regarding the connections between rough sets and other forms of sets. It was
Pawlak’s venerable habit to point to connections between his own work in rough
sets and the works of others in philosophy and mathematics. This is especially
true relative to two cardinal notions, namely, sets and vagueness. For the classical
notion of a set, Pawlak called attention to works by Cantor, Frege and Bertrand
Russell. Pawlak observed that the notion of a set is not only fundamental for the
whole of mathematics but also for natural language, where it is commonplace
to speak in terms of collections of such things as books, paintings, people, and
their vague properties [35].

In his reflections on structured objects, Pawlak pointed to the work on mere-
ology by Stanis�law Leśniewski, where the relation being a part replaces the mem-
bership relation ∈. Of course, in recent years, the study of Leśniewski’s work has
led to rough mereology and the relation being a part to a degree in 1996 (see,
e.g., [38] cited by Pawlak in [35]).

For many years, Pawlak was also interested in vagueness and Gottlob Frege’s
notion of the boundary of a concept (see, e.g., [2,5]). For Frege, the definition of a
concept must unambiguously determine whether or not an object falls under the
concept. For a concept without a sharp boundary, one is faced with the problem
of determining how close an object must be before it can be said to belong to a
concept. Later, this problem of sharp boundaries shows up as a repeated motif in
landscapes and waterscapes painted by Pawlak (see, e.g., Fig. 5.1 and Fig. 5.2).
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Pawlak also observed out that mathematics must use crisp, not vague concepts.
Hence, mathematics makes it possible to reason precisely about approximations
of vague concepts. These approximations are temporal and subjective [35].

Professor Zdzis�law Pawlak was very happy when he recognized that the rough
set approach is consistent with a very old Chinese philosophy that is reflected
in a recent poem from P.R. China (see Fig. 3).

The poem in Fig. 3 was written by Professor Xuyan Tu, the Honorary Presi-
dent of the Chinese Association for Artificial Intelligence, to celebrate the
establishment of the Rough Set and Soft Computation Society at the Chinese
Association for Artificial Intelligence, in Guangzhou, 21 December 2003. A num-
ber of English translations of this poem are possible. Consider, for example, the
following two translations of the poem in Fig. 3, which capture the spirit of the
poem and its allusion to the fact that rough sets hearken back to a philosophy
rooted in ancient China.

Fig. 3. Poem about Rough Sets in Chinese

Rough sets are not rough, and one moves towards precision.
One removes the “unbelievable” so that what remains is more believable.
The soft part of computing is nimble.
Rough sets imply a philosophy rooted in China.
Anonymous
8 January 2005

Rough sets are not “rough” for the purpose of searching for accuracy.
It is a more reliable and believable theory that avoids falsity and keeps
the truth.
The essence of soft computing is its flexibility.
[Rough Sets] reflect the oriental philosophy and fit the Chinese style of
thinking.
Xuyan Tu, Poet
Yiyu Yao, Translator
21 December 2003
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The 8 January 2005 anonymous translation is a conservative rendering of the
Chinese characters in a concise way in English. The 21 December 2003 translation
is more interpretative, and reflects the spirit of an event as seen by the translator
in the context of the opening of the Institute of Artificial Intelligence in P.R.
China.

Fig. 4. Zdzisaw Pawlak in Snow Country

10 Painting and Nature

Zdzis�law Pawlak was an astute observer of nature and was very fond of spending
time exploring and painting the woodlands, lakes and streams of Poland. A
picture showing Pawlak during a walk in snow-covered woods is shown in Fig. 4.
Starting in the early 1950s and continuing for most of his life, Pawlak captured
what he observed by painting landscapes and waterscapes. Sample paintings by
Pawlak are shown in Fig. 5 and Fig. 6.

A common motif in Pawlak’s paintings is the somewhat indefinite separation
between objects such as the outer edges of trees and sky (see, e.g., Fig. 5.3,
Fig. 5.4 and 6.1). In Fig. 6.1, there is a blurring (uncertain boundary) between
the tops of the trees and shrubs against the sky. Notice how the separation be-
tween the reeds in the foreground and the water on the far side of the reeds is
rather indistinct in Fig. 6.1 (i.e., there is no sharp boundary between the reeds
and water). This blurring the boundaries between tree shadows and water is also
particularly pronounced in Fig. 6.1, Fig. 5.3 and Fig. 5.4. There is considerable
charm in Fig. 5.4, where there is a colorful blending of the tree shadows, water
and the surrounding land. The boundaries of objects evident in Pawlak’s paint-
ings are suggestive of the theoretical idea of the boundary between the lower
and upper approximations of a set in rough set theory. There is also in Pawlak’s
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5.1: 1954 Landscape by Pawlak 5.2: 1999 Watercape by Pawlak

5.3: Treeline Painting by Pawlak 5.4: 1999 Tree Shadows by Pawlak

Fig. 5. Paintings by Zdzis�law Pawlak

paintings an apparent fascination with containment of similar objects such as
the roadway bordered by gorse in Fig. 6.3, line of haystacks in a field in Fig. 6.4,
distant mountains framed by a border of evergreens and flora in the foreground
in Fig. 5.3 as well as in Fig. 6.2 of the parts of a tree shadows shimmering in the
water in Fig. 6.1 or the pixels clustered together to represent a distant building
(see, e.g., Fig. 5.2). In some sense, the parts of a tree shadow or the parts of the
roof of a distant building are indiscernible from each other.

The water shadows can be considered as approximations (substitutions) for
the reflected objects in Fig. 5.3 and Fig. 5.4. To see this, try the following ex-
periment. Notice that every pixel (picture element) with coordinates (x, y) has
4 neighbors at (x+1, y), (x-1, y), (x, y+1), and (x, y-1), which constitute what
is known as a 4-neighborhood of an image. An image segment is a collection of
4-neighborhood connected pixels with the same color. Let U consist of the color
segments in Fig. 5.4, and consider only the shape and color of the segments in
U . The image segments making up the trees have “reflected” segments in tree
shadows in Fig. 5.4. Mask or cover up the image segments contained in the trees
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6.1: Reeds by Pawlak 6.2: Vista by Pawlak

6.3: Mountains by Pawlak 6.4: Hay Field by Pawlak

Fig. 6. Other Paintings by Zdzis�law Pawlak

along the distant shoreline, then segments in the tree shadows can be used to
approximate the corresponding segments of the trees shown in Fig. 5.4. To see
this, go a step further, repaint the vacant space in the masked area of the painting
with image segments from the tree shadows in Fig. 5.4. The new version of the
painting will be approximately like the original painting. This approximation
will vary depending on the time of day and the length of the tree shadows.

11 Poetry

In more recent years, Zdzis�law Pawlak wrote poems, which are remarkably suc-
cinct and very close to the philosophy of rough sets as well as his interest in
painting. In his poems, one may find quite often some reflections which most
probably stimulated him in the discovery of the rough sets, where there is a
focus on border regions found in scenes from nature. A sample poem coauthored
by Pawlak is given next (each line of the English is followed by the corresponding
Polish text).



Zdzis�law Pawlak: Life and Work 15

Near To
Blisko

How near to the bark of a tree are the drifting snowflakes,
Jak blisko kory drzew p�latki śniegu tworza̧ zaspy,

swirling gently round, down from winter skies?
Wiruja̧c delikatnie, gdy spadaja̧ z zimowego nieba?

How near to the ground are icicles,
Jak blisko ziemi sa̧ sople lodu,

slowing forming on window ledges?
Powoli formuja̧ce siȩ na okiennych parapetach?

Sometimes snow-laden branches of some trees droop,
Czasami, ga�lȩzie drzew zwieszaja̧ siȩ pod ciȩżarem śniegu,

some near to the ground,
niektóre prawie do samej ziemi,

some from to-time-to-time swaying in the wind,
niektóre od czasu do czasu ko�lysza̧ siȩ na wietrze,

some nearly touching each other as the snow falls,
niektóre niemal dotykaja̧ siȩ wzajemnie, gdy śnieg pada,

some with shapes resembling the limbs of ballet dancers,
niektóre o kszta�ltach przypominaja̧cych kończyny baletnic,

some with rough edges shielded from snowfall and wind,
niektóre o nierównych rysach, os�loniȩte przed śniegiem i wiatrem,

and then,
i potem,

somehow,
w jakís sposób,

spring up again in the morning sunshine.
Wyrastaja̧ na nowo w porannym s�lońcu.

How near to ...
Jak już blisko do ...

– Z. Pawlak and J.F. Peters,

Spring, 2002.
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The poem entitled Near To took its inspiration from an early landscape painted
by Pawlak in 1954, which is shown in Fig. 5.1.

12 Outgrowth of Research by Zdzis�law Pawlak

This section briefly introduces the literature in that has been inspired by the
Zdzis�law Pawlak’s research in rough set theory and applications.

12.1 Journals

Evidence in the growth in the research in the foundations of rough set theory and
its many applications can be found in the Transactions on Rough Sets (TRS),
which is published by Springer as a journal subline of the Lecture Notes in
Computer Science [71]. TheTRS has as its principal aim the fostering of pro-
fessional exchanges between scientists and practitioners who are interested in
the foundations and applications of rough sets. Topics include foundations and
applications of rough sets as well as foundations and applications of hybrid
methods combining rough sets with other approaches important for the devel-
opment of intelligent systems. We are observing a growing research interest in
the foundations of rough sets, including the various logical, mathematical and
philosophical aspects of rough sets. Some relationships have already been estab-
lished between rough sets and other approaches, and also with a wide range of
hybrid systems. As a result, rough sets are linked with decision system model-
ing and analysis of complex systems, fuzzy sets, neural networks, evolutionary
computing, data mining and knowledge discovery, pattern recognition, machine
learning, and approximate reasoning. In particular, rough sets are used in prob-
abilistic reasoning, granular computing (including information granule calculi
based on rough mereology), intelligent control, intelligent agent modeling, iden-
tification of autonomous systems, and process specification. A wide range of
applications of methods based on rough set theory alone or in combination with
other approaches have been discovered in the following areas: acoustics, biology,
business and finance, chemistry, computer engineering (e.g., data compression,
digital image processing, digital signal processing, parallel and distributed com-
puter systems, sensor fusion, fractal engineering), decision analysis and systems,
economics, electrical engineering (e.g., control, signal analysis, power systems),
environmental studies, digital image processing, informatics, medicine, molecu-
lar biology, musicology, neurology, robotics, social science, software engineering,
spatial visualization, Web engineering, and Web mining. The journal includes
high-quality research articles accepted for publication on the basis of thorough
peer reviews. Dissertations and monographs up to 250 pages that include new
research results can also be considered as regular papers. Extended and revised
versions of selected papers from conferences can also be included in regular or
special issues of the journal (see, e.g., [72, 73, 74, 75]). In addition, articles that
have appeared in journals such as Communications of ACM [67], Computational
Intelligence [95], Fundamenta Informaticae (see, e.g., [45], International Journal
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of Intelligent Systems [69, 70], Journal of the Intelligent Automation and Soft
Computing [56], Neurocomputing [63], and Pattern Recognition Letters [83].

In the period 1997-2002, many articles on rough sets have been published in
Bulletin of the International Rough Sets Society [90].

12.2 Conferences

The wide spectrum of research in rough sets and its applications can also be
gauged by a number of international conferences. The premier conference of the
International Rough Set Society (IRSS)3 is the Internationl Conference on Rough
Sets and Current Trends in Computing (RSCT) was held for first time in Warsaw,
Poland in 1998. It was followed by successful RSCTC conferences in Banff, Canada
(2000), in Malvern, U.S.A. (2002) and in Uppsala, Sweden (2004) [43,53,79,92,98].
RSCTC is an outgrowth of a series of annual International Workshops devoted to
the subject of rough sets, started in Poznan, Poland in 1992, and then held alterna-
tively in Canada, the USA, Japan and China (RSKD, RSSC, RSFDGrC, RSGrC
series).The nextRSCT will be held in Kobe, Japan in 2006.The aim of the RSCTC
conference is to provide researchers and practitioners interested in new informa-
tion technologies an opportunity to highlight innovative research directions, novel
applications, and a growing number of relationships between rough sets and such
areas as computational intelligence, knowledge discovery and data mining, intelli-
gent information systems, web mining, synthesis and analysis of complex objects
and non-conventional models of computation.

The IRSS also sponsors two other international conferences, namely, Rough
Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC) (see,
e.g., [51,82,86,87,91,93,95]) and Rough Sets and Knowledge Discovery (RSKD),
held for the first time in 2006 in Chongqing, P.R. China [76]. RSFDGrC 2005
[86, 87] was a continuation of international conferences and workshops devoted
to the subject of rough sets, held alternatively in Canada, P.R. China, Japan,
Poland, Sweden, and the USA. RSFDGrC achieved the status of bi-annual in-
ternational conference starting from the year of 2003 in Chongqing, P.R. China.
This conference encompasses rough sets and fuzzy sets, granular computing,
as well as knowledge discovery and data mining. RSKT 2006 [76] provides a
forum for researchers in rough sets and knowledge technology. Rough set the-
ory is closely related to knowledge technology in a variety of forms such as
knowledge discovery, approximate reasoning, intelligent and multiagent systems
design, knowledge intensive computations that signal the emergence of a knowl-
edge technology age. The essence of growth in cutting-edge, state-of-the-art and
promising knowledge technologies is closely related to learning, pattern recogni-
tion, machine intelligence and automation of acquisition, transformation, com-
munication, exploration and exploitation of knowledge. A principal thrust of
such technologies is the utilization of methodologies that facilitate knowledge
processing. The focus of the RSKT conference is to present state-of-the-art
scientific results, encourage academic and industrial interaction, and promote

3 See http://www.roughsets.org/.
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collaborative research and developmental activities, in rough sets and knowl-
edge technology worldwide.

During the past 10 years, a number of other conferences and workshops that
include rough sets as one of the principal topics, have also been taken place (see,
e.g., [48, 58, 89, 85, 99, 100,101,102,103]).

12.3 Books

During the past two decades, a significant number of books and edited volumes
have either featured or included articles on rough set theory and applications
(see, e.g., [44,46,47,48,49,50,52,54,55,57,59,60,77,78,80,81,84,88,94,61,62,63,
64,65,66,68]). For example, the papers on rough set theory and its applications
in [80,81] present a wide spectrum of topics. It is observed that rough set theory
is on the crossroads of fuzzy sets, theory of evidence, neural networks, Petri nets
and many other branches of AI, logic and mathematics. The rough set approach
appears to be of fundamental importance to AI and cognitive sciences, espe-
cially in the areas of machine learning, knowledge acquisition, decision analysis,
knowledge discovery from databases, expert systems, inductive reasoning and
pattern recognition.

12.4 Tutorials

In 1991, Zdzis�llaw Pawlak published a monograph that provides a comprehensive
presentation of the fundamentals on rough sets [66]. The book by Pawlak on ap-
proximation of sets by other sets that is based on the study of a finite, non-empty
sets of objects called universe where each universe is denoted by U , subsets of
U called concepts, attributes (features) of objects, and an indiscernibility rela-
tion Ind that partitions U into a collection of disjoint equivalence classes (called
blocks in Sect. 3). This seminal work by Pawlak was the forerunner of numerous
advances in rough set theory and its applications. After 1991, a succession of tu-
torials have been published that capture the essentials of rough sets and exhibit
the growth in research in the theory and applications (see, e.g., [6, 35, 36, 77]).

13 Conclusion

This paper attempts to give a brief overview of some of the contributions made
by Zdzis�law Pawlak to rough set theory, conflict analysis and negotiation, genetic
grammars and molecular computing, philosophy, painting and poetry during his
lifetime. Remarkably, one can find a common thread in his theoretical work on
rough sets as well as in conflict analysis and negotiation, painting and poetry,
namely, Pawlak’s interest in the border regions of objects that are delineated
by considering the attributes (features) of an object. The work on knowledge
representation systems and the notion of elementary sets have profound impli-
cations when one considers the problem of approximate reasoning and concept
approximation.

– James F. Peters and Andrzej Skowron
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Abstract. The article aims at re-visiting the notion of rough truth pro-
posed by Pawlak in 1987 [15] and investigating some of its ‘logical’ conse-
quences. We focus on the formal deductive apparatus LR, that is sound
and complete with respect to a semantics based on rough truth. LR turns
out to be equivalent to the paraconsistent logic J due to Jaśkowski. A
significant feature of rough truth is that, a proposition and its negation
may well be roughly true together. Thus, in [5], rough consistency was
introduced. Completeness of LR is proved with the help of this notion of
consistency. The properties of LR motivate us to use it for a proposal of
rough belief change. During change, the operative constraints on a system
of beliefs are that of rough consistency preservation and deductive closure
with respect to LR. Following the AGM [1] line, eight basic postulates for
defining rough revision and contraction functions are presented. Interre-
lationships of these functions are also proved. The proposal is, therefore,
an example of paraconsistent belief change.

1 Introduction

The notion of rough truth was introduced in [15] as a part of the first formal
proposal on reasoning with rough sets. The work in [15], in fact, paved the way
for much subsequent study on logics of rough sets, a good survey of which can
be found in [11]. But rough truth seems to have escaped due attention, though
it was developed to some extent in [5,3]. The present article investigates related
issues and some further ‘logical’ implications of this notion.

Rough truth was proposed to reflect ‘inductive’ truth, i.e. truth relative to our
present state of knowledge, and one that, with gain of knowledge, leads to total,
‘deductive’ truth. This sense of ‘gradualness’ finds an expression in, possibly,
the only qualitative version of ‘approximate’ or ‘soft’ truth, as opposed to other
quantitative definitions found in, e.g., probabilistic, multi-valued or fuzzy logics.
Let us look at the definition formally.

It has generally been accepted that the propositional aspects of Pawlak’s
rough set theory are adequately expressed by the modal system S5. An S5
(Kripke) model (X,R, π) (cf. e.g. [9]) is essentially an approximation space [14]
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J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets V, LNCS 4100, pp. 25–38, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



26 M. Banerjee

(X,R), where X �= ∅, with the function π interpreting every well-formed formula
(wff) of S5 as a rough set in (X,R). If L,M denote the necessity and possibility
connectives respectively, a modal wff Lα (Mα), representing ‘definitely’ (‘possi-
bly’) α, is interpreted by π as the lower (upper) approximation π(α) (π(α)) of
the set π(α).

Using this formalism, a wff α may be termed roughly true in (X,R, π), if
π(α) = X . In [5,3], we extended rough truth to rough validity, and also in-
troduced the notions of rough consequence, rough (in)consistency. These were
further considered in the context of predicate logic in [4]. The rationale behind
the introduction of the concepts was as follows.

Given the aforementioned syntax, one may wish to derive in it, roughly true
propositions/beliefs from roughly true premisses (in the same information sys-
tem). In particular, one may look for interderivability of propositions that are
both roughly true and logically equivalent in possibility. This led to the relation
of rough consequence. It was also felt that the notion of (in)consistency needs
to be relaxed. In the face of an incomplete description of a concept p, one may
not always think that p and ‘not’ p represent conflicting situations. There could
be two options to define consistency here – according as ‘possibly’ p is satisfied,
and ‘necessarily’ p is satisfied. It is thus that we have the two notions of rough
consistency and rough inconsistency.

In this paper, we focus on these features of rough reasoning again, and on
the syntactic counterpart LR of a semantics based on rough truth. LR is built
over S5, and is a modified version of the rough consequence logic of [5]. One
observes that the logic is paraconsistent, i.e. if a set Γ of wffs in it contains two
members, one of which is the negation of the other, then Γ does not yield all wffs
as its consequence. In other words, it violates the principle of ex contradictione
sequitur quodlibet (ECQ), viz. Γ ∪ {α,¬α} |= β, for all Γ, α, β. In fact, LR is
seen to be equivalent to the paraconsistent logic J due to Jaśkowski (cf. e.g.
[6], implicitly present in [10]). We present the system LR and its properties
in Section 2. Proofs of the main results stated in the section are given in the
Appendix.

Research on belief change has seen a lot of development through the years. A
pioneering work, undoubtedly, has been by Alchourrón, Gärdenfors and Makin-
son in [1]. The formalisation propounded by the authors consists of three main
kinds of belief change: expansion, revision, and contraction. In the first kind, a
belief is inserted into a system S (say), irrespective of whether S becomes ‘in-
consistent’ as a result. Revision and contraction represent, respectively, insertion
and deletion of beliefs maintaining (‘integrity’ constraints of) consistency of the
system, deductive closure and minimal information loss. The AGM ‘rationality’
postulates for defining revision and contraction functions were formulated in [1].
A to-and-fro passage between contraction and revision is established through
the Levi and Harper identities.

The AGM postulates have since been questioned, modified, and alterna-
tives like algorithms for computing the change functions have been proposed
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(cf. [7,19,18,20]). For instance, the AGM approach assumes representation of
belief states by ‘belief sets’ – sets deductively closed relative to a (Tarskian) logic
and so, usually, infinite. The agents are idealized, with unlimited memory and
capacity of inference. Modification in defining belief change has been attempted
(e.g.) by use of ‘belief bases’ (cf. [7,18]), or disbeliefs along with beliefs [8].

Another category of modification alters the base logic used to define belief
change. Non-Tarskian logics have been considered, for the modelling of less ide-
alized (more realistic) agents [22] or for the modelling of intuitive properties
of epistemic states that the AGM approach fails to cover [12]. Investigations
have been carried out, in particular, keeping in view situations where classical
inconsistency conditions do not apply. For instance in [17], we find the base logic
being taken as the paraconsistent 4-valued logic resulting from the notion of first
degree entailment. We also find discussions of paraconsistent belief revision in
[21,16,13].

Most of everyday reasoning appears to be conducted, even if a model of just
the possible versions of our beliefs is available. In this context, the notion of
rough truth and rough consistency seem particularly appropriate for creating a
‘non-classical’ belief change framework. Agents, for us, are interested in situa-
tions where the rough truth of propositions/observations/beliefs matters. Beliefs
are represented by the wffs of LR. So modal wffs Lα and Mα express ‘cer-
tain’/‘necessary’ and ‘uncertain’/(but) ‘possible’ beliefs respectively, depending
on the (in)completeness of the available information. Deduction is carried out
through the apparatus of LR, as it captures ‘precisely’ the semantics of rough
truth. During revision/contraction of beliefs, we seek the preservation of rough
consistency, and deductive closure with respect to LR.

In order to make a beginning, we have followed the AGM line of thought,
and defined rough belief change functions through eight basic postulates (cf.
Section 3). The present article is an expanded version of [2]. In particular, we
have added to the core postulates presented in [2], those concerning composite
revision and contraction, specifically pertaining to conjunctions. As we shall see,
the classical conjunction rule ‘if {α, β}, then α∧β’ does not hold in LR – hence
these added postulates differ from their classical versions. Interrelationships of
the revision and contraction functions, resulting from the use of the Levi and
Harper identities, are proved. As LR is paraconsistent, the proposed change
functions provide an example of paraconsistent belief change. The last section
concludes the article.

2 The System LR

The language of LR is that of a normal modal propositional logic, wffs be-
ing given as: p ∈ P|¬α|α ∧ β|Lα, where P denotes the set of all propositional
variables. The other connectives, viz. ∨,→,↔,M, are defined as usual. In the
following, Γ is any set of wffs, and α, β are any wffs of LR.



28 M. Banerjee

2.1 The Semantics

An S5-model, as mentioned in the Introduction, is a triple (X,R, π), where
X �= ∅, R is an equivalence relation on X , and the function π associates with
every propositional variable p, a subset π(p) of X (i.e. π : P → 2X). π is
extended to the set of all wffs of the language in the standard way. (We use the
same notation π for the extension.)

π(¬α) ≡ π(α)c; π(α ∧ β) ≡ π(α) ∩ π(β);
π(Lα) ≡ {x ∈ X : y ∈ π(α) for all y such that xRy} ≡ π(α).

Thus π interprets any wff of S5 as a rough set in the approximation space (X,R).
A wff α is true in an S5-model (X,R, π), provided π(α) = X . One writes

Γ |= α to denote that, whenever each member γ of Γ is true in (X,R, π), α is
true in it as well.

Definition 1. An S5-model M ≡ (X,R, π) is a rough model of Γ , if and only
if every member γ of Γ is roughly true in M, i.e. π(γ) = X.

Definition 2. α is a rough semantic consequence of Γ (denoted Γ |≈α) if and
only if every rough model of Γ is a rough model of α. If Γ is empty, α is said
to be roughly valid, written |≈α.

Example 1. Let Γ ≡ {p}, X ≡ {a, b, c}, R ≡ {(a, a), (b, b), (c, c), (a, b), (b, a)},
and π be such that π(p) ≡ {a, c}. Then π(Mp) = π(p) = X , and so (X,R, π) is
a rough model of Γ . In fact, observe that every rough model of {p} is a rough
model of Mp, i.e. {p}|≈Mp.

Let MΓ ≡ {Mγ : γ ∈ Γ}. It is clear that

Observation 1. Γ |≈α, if and only if MΓ |= Mα.

So, semantically, LR is equivalent to the (pre-)discussive logic J of Jaśkowski.
In the following, we present a proof system for LR, and in the process, an
axiomatization for J . Proofs of some of the stated results are given in the
Appendix.

2.2 The Rough Deductive Apparatus

Let us recall, first, the deductive apparatus of S5 [9]. α, β, γ are any wffs.
Axioms:
(i) α → (β → α); (α → (β → γ)) → ((α → β) → (α → γ));

(¬β → ¬α) → (α → β) (axioms of Propositional Calculus).
(ii) L(α → β) → (Lα → Lβ) (K).
(iii) Lα → α (T ).
(iv) Mα → LMα (S5).
Rules of inference:
(i) Modus Ponens.
(ii) If α is a theorem, so is Lα (Necessitation).
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This gives an axiom schemata for S5, and the consequence relation, denoted �,
gets to be closed under uniform substitution.

Let us now consider two rules of inference, R1, R2:

R1. α R2. Mα
β Mβ

where � Mα → Mβ Mα ∧Mβ

The consequence relation defining the system LR is given as follows.

Definition 3. α is a rough consequence of Γ (denoted Γ |∼α) if and only if
there is a sequence α1, ..., αn(≡ α) such that each αi(i = 1, ..., n) is either (i) a
theorem of S5, or (ii) a member of Γ , or (iii) derived from some of α1, ..., αi−1

by R1 or R2.
If Γ is empty, α is said to be a rough theorem, written |∼α.

LR is therefore structural. The rule R1 is meant to yield from a wff α, any
wff β that is logically equivalent in possibility. A special case would be when
β is roughly equal [14] to α. This can be expressed using the rough equality
connective ≈ [3]: α ≈ β ≡ (Lα ↔ Lβ) ∧ (Mα ↔ Mβ). It must be noted here
that a different, but equivalent version (called RMP1) of R1 was considered in
[3,5], to accommodate this special case. Another rule (RMP2) was considered
in [3,5], but it can be derived in LR. R2 was not considered there. However,
it appears to be essential now for proving strong completeness. It replaces the
classical conjunction rule, which is not sound here (cf. Observation 3(c)).

Some derived rules of inference:

DR1. α DR2. (Mα)Lα
� α → β (Mα)Lα → β

β β

DR3. Mα DR4. α → Mβ
¬Mα α → ¬Mβ
β ¬α

DR5. Mα DR6. α
α Mα

DR7. Mα → γ DR8. � α → β
Mβ → γ β → γ

Mα ∨Mβ → Mγ α → γ

Observation 2
(a) The system is then strictly enhanced, in the sense that the set of rough
theorems properly contains that of S5-theorems. E.g. |∼α → Lα, but
�� α → Lα. The latter is well-known, and we obtain the former from
|∼M(α → Lα) (an S5-theorem) and DR5.
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(b) |∼ satisfies cut and monotonicity.
(c) |∼ is clearly compact, by its definition. In fact, one can find a single
wff δ with {δ}|∼α, whenever {γ1, ..., γn}|∼α: we take δ such that � Mδ ↔
(Mγ1 ∧ ...∧Mγn). (For any γ1, γ2, an instance of such a δ would be the wff
((γ1 ∧ γ2) ∨ (γ1 ∧Mγ2 ∧ ¬M(γ1 ∧ γ2))).)

Note 1. The axiomatization A of J presented in [6], comprises the rules: (i) if α
is an S5-axiom, then Lα; (ii) if Lα,L(α → β), then Lβ; (iii) if Lα, then α; (iv) if
Mα, then α; (v) if Lα, then LLα. One can prove that A and LR are equivalent,
by showing that the rules of one system are derivable in the other. For instance,
(iv) of A is just DR5 in LR, and (i)-(v) are derivable here by using Definition
3(i), DR1 and DR2. Properties of A (cf. [6]) result in the converse.

Two of the immediate results are

Theorem 1. (Deduction) For any Γ, α, β, if Γ ∪ {α}|∼β, then Γ |∼α → β.

Theorem 2. (Soundness) If Γ |∼α, then Γ |≈α.

Observation 3
(a) |∼α, if and only if � Mα: (⇒) |∼α implies |≈α (by soundness), and
so |= Mα, by Observation 1. This implies � Mα, by completeness of S5.
(⇐) By DR5.
(b) If � α, then |∼Lα.
(c) The classical rules of Modus Ponens and Necessitation fail to be sound
with respect to the rough truth semantics. The rule {α, β}|∼α∧β is not sound
either, but it is so for modal wffs, i.e. for wffs of the form Mγ or Lγ, for
some wff γ (by R2 and DR1).
(d) Interestingly, the soundness result establishes that the converse of the
deduction theorem is not true – e.g. |∼p → Lp, but {p} � |∼Lp, p being any
propositional variable. However, the converse does go through, i.e. Γ |∼α → β
implies Γ ∪ {α}|∼β, if α is a modal wff – this is because of DR2.
(e) |∼α ↔ (M)Lα. So there is no difference between the modal and non-
modal wffs in terms of the object-level implication →. However, as just noted,
{α}� |∼Lα in general – indicating that the meta-level implication |∼ does make
this distinction.

It should be remarked that many of these points have been observed in the
context of the logic J , e.g. in [6].

2.3 Rough Consistency

Definition 4. A set Γ of wffs is roughly consistent if and only if the set MΓ ≡
{Mγ : γ ∈ Γ} is S5-consistent. Γ is roughly inconsistent if and only if LΓ ≡
{Lγ : γ ∈ Γ} is S5-inconsistent.
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Observation 4
(a) Inconsistency implies rough inconsistency. The converse may not be
true, taking e.g. the set {p,¬Lp}, p being any propositional variable.
(b) Consistency implies rough consistency. Again, the converse may not be
true – taking e.g. the set {p,¬p}.
(c) There may be sets which are simultaneously roughly consistent and in-
consistent. The example in (b) applies.
(d) If Γ is not roughly consistent, it is roughly inconsistent.

The following shows that the ECQ principle (cf. Introduction) is not satisfied by
LR.

Theorem 3. LR is paraconsistent.

Proof. There are wffs α, β such that {α, ¬α} � |∼β: one can easily show that
{p,¬p} � |≈Lp, p being any propositional variable. Hence, by soundness, the result
obtains. ��

However, we do have {α ∧ ¬α}|∼β, for all α, β, so that LR is weakly para-
consistent.

Theorem 4. Γ is roughly consistent, if and only if it has a rough model.

Theorem 5. If Γ is not roughly consistent, then Γ |∼α for every wff α.

The proof of Theorem 4 uses only S5 properties, and that of Theorem 5 uses
the rule of inference R2 (in fact, DR3).

Theorem 6. If Γ ∪ {¬Mα}|∼β for every wff β, then Γ |∼α.

Theorem 7. (Completeness) If Γ |≈α, then Γ |∼α.

Proof. We suppose that Γ � |∼α. By Theorem 6 there is β such that Γ ∪ {¬Mα}
� |∼β. Thus Γ ∪ {¬Mα} is roughly consistent, using Theorem 5. By Theorem 4,
Γ ∪ {¬Mα} has a rough model, which yields Γ � |≈α. ��

3 Belief Change Based on LR

In classical belief revision, the base language is assumed (cf. [7]) to be closed un-
der the Boolean operators of negation, conjunction, disjunction, and implication.
The underlying consequence relation is supraclassical (includes classical conse-
quence) and satisfies cut, deduction theorem, monotonicity and compactness.
Because of the assumption of supraclassicality, the ECQ principle is satisfied by
the base consequence.

Paraconsistent belief change has been discussed, for instance, by Restall and
Slaney [17], Tanaka [21], Priest [16], and Mares [13]. One of the objections raised
against this approach is that, since the ECQ principle is rejected, if a paracon-
sistent logic is used as an underlying system for belief change, one may not be
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committed to revision at all. As an answer, we find a proposal in [16,13] of revi-
sion when the belief set becomes incoherent, not inconsistent. In [17], the notion
of first degree entailment is taken as a basis for belief change, and so beliefs
can be both true and false, as well as neither true nor false. Postulates defining
revision and contraction are presented, based on the resulting paraconsistent 4-
valued logic. This is followed by constructions of contraction functions through
the standard methods of epistemic entrenchment, partial meet contractions and
Grove’s system of spheres, each generalized appropriately to accommodate this
reasoning framework. On the other hand, Tanaka proposes a paraconsistent ver-
sion of Grove’s sphere semantics for the AGM theory, using the three kinds
of paraconsistent logic, viz. the non-adjunctive, positive plus and relevant sys-
tems. He further studies soundness of this semantics with respect to the AGM
postulates.

Here, we would like to present an example of paraconsistent belief change,
that uses the modal language of LR as the base. It may be noticed that, though
the corresponding consequence relation CR is not supraclassical, it satisfies the
other properties mentioned earlier (cf. Theorem 1, Observation 2(b),(c)). We
follow the classical line for the definitions. A belief set is a set Γ of wffs such
that CR(Γ ) = Γ . For a pair (Γ, α), there is a unique belief set Γ ∗

r α (Γ −r α)
representing rough revision (contraction) of Γ with respect to α. The new belief
set is defined through a set of eight basic postulates (that follow). The expansion
Γ +r α of Γ by the wff α is the belief set CR(Γ ∪ {α}). It is expected that
rough contraction/revision by two roughly equal beliefs would lead to identical
belief sets. To express this, we make use of the rough equality connective ≈
(cf. Section 2.2).

The postulates for rough revision

Rr1 For any wff α and belief set Γ , Γ ∗
r α is a belief set.

Rr2 α ∈ Γ ∗
r α.

Rr3 Γ ∗
r α ⊆ Γ +r α.

Rr4 If ¬α �∈ Γ , then Γ +r α ⊆ Γ ∗
r α.

Rr5 Γ ∗
r α is not roughly consistent, only if |∼¬α.

Rr5′ Γ ∗
r α is roughly inconsistent, only if |∼¬α.

Rr6 If |∼α ≈ β, then Γ ∗
r α = Γ ∗

r β.
Rr7 Γ ∗

r (Mα ∧Mβ) ⊆ Γ ∗
r α +r β.

Rr8 If ¬β �∈ Γ ∗
r α, then Γ ∗

r α +r β ⊆ Γ ∗
r (Mα ∧Mβ).

The postulates for rough contraction

Cr1 For any wff α and belief set Γ , Γ −r α is a belief set.
Cr2 Γ −r α ⊆ Γ .
Cr3 If α �∈ Γ , then Γ −r α = Γ .
Cr4 If � |∼α, then α �∈ Γ −r α.
Cr4′ If � |∼α, then Lα �∈ Γ −r α.
Cr5 Γ ⊆ (Γ −r α) +r α, if α is of the form Lβ or Mβ for some wff β.
Cr6 If |∼α ≈ β, then Γ −r α = Γ −r β.
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Cr7 Γ −r α ∩ Γ −r β ⊆ Γ −r (Mα ∧Mβ).
Cr8 If α �∈ Γ −r (Mα ∧Mβ), then Γ −r (Mα ∧Mβ) ⊆ Γ −r α.

Before elaborating on these, let us point out the AGM postulates that have
undergone a change here. Γ ∗α, Γ −α and Γ +α denote the (classically) revised,
contracted and expanded belief sets respectively, and Γ⊥ the set of all wffs of
the language.

Revision postulates
R5 Γ ∗α = Γ⊥ only if � ¬α.
R6 If � α ↔ β, then Γ ∗α = Γ ∗β.
R7 Γ ∗(α ∧ β) ⊆ Γ ∗α + β.
R8 If ¬β �∈ Γ ∗α, then Γ ∗α + β ⊆ Γ ∗(α ∧ β).

Contraction postulates
C4 If �� α, then α �∈ Γ − α.
C5 Γ ⊆ (Γ − α) + α.
C6 If � α ↔ β, then Γ − α = Γ − β.
C7 Γ − α ∩ Γ − β ⊆ Γ − (α ∧ β).
C8 If α �∈ Γ − (α ∧ β), then Γ − (α ∧ β) ⊆ Γ − α.

The major consideration here is to preserve rough consistency during belief
change. The idea, expectedly, is that if Γ +rα is roughly consistent, it could itself
serve as Γ ∗

r α. Let us notice the difference with the classical scenario: suppose
Γ ≡ CR({p}), p being any propositional variable. Then Γ +r ¬p is roughly
consistent, and so it is Γ ∗

r ¬p itself. But, classically, Γ ∗¬p ⊂ Γ + ¬p. Since
we also have the notion of rough inconsistency, there is the option of avoiding
such inconsistency during belief change. It is thus that there are two versions of
postulates involving consistency preservation.

Rr1 and Cr1 express the constraint of deductive closure. Rr2 places a natural
requirement on revision, and since the result of contraction is generally smaller
than the original belief set, we have Cr2. The result of revision must lie within
that of expansion of a belief set, and if α �∈ Γ , there would be no question of
retracting it from Γ – giving Rr3, Cr3 respectively. ¬α �∈ Γ implies consistency
and hence rough consistency of Γ +r α, so that, in view of the previous remarks,
Rr4 is justifiable in the rough context.

In Rr5, we stipulate that Γ ∗
r α is generally roughly consistent, except in the

case when ¬α is roughly valid, i.e. in no situation ‘definitely’ α holds (though
‘possibly’ α may hold). Cr4 again stipulates that, in general, α �∈ Γ −r α, except
when α ‘is possible’ in all situations. Cr4′ could appear more relevant: ‘definitely’
α may follow from our beliefs despite contraction by α only if α is, in every
situation, possible. The controversial recovery postulate C5 in [1] is admitted
here as Cr5, only in the case of contraction with a definable/describable [14]
belief, i.e. α such that � α ↔ Lα. If |∼α ≈ β, then CR(α) = CR(β) – leaving
the belief sets after any change with respect to α, β identical. This is stipulated
in Rr6, Cr6. The last two axioms express the relationship of change functions
with respect to beliefs and their conjunctions. The failure of soundness of the
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classical conjunction rule {α, β}|∼α ∧ β here, necessitates a modification in the
AGM R7, R8, C7, C8 giving Rr7, 8, Cr7, 8 respectively. Let us further elaborate
on Rr8. If Γ ∗

r (Mα∧Mβ) is roughly consistent, it cannot contain ¬M(Mα∧Mβ),
i.e. neither ¬Mα, nor ¬Mβ can belong to the set. Now, if Γ ∗

r α were also roughly
consistent, ¬Mα would not be its member, and therefore it would not be a
member of the expansion Γ ∗

r α +r β either. However, ¬Mβ could well be in
Γ ∗

r α+r β. Thus Rr8 says that, if ¬β �∈ Γ ∗
r α – whence ¬Mβ �∈ Γ ∗

r α – there is no
difference between the two belief sets Γ ∗

r (Mα ∧Mβ) and Γ ∗
r α +r β. One may

give a similar argument for Cr8.

Observation 5. Rr5′ implies Rr5 and Cr4 implies Cr4′.

The following interrelationships between rough contraction and revision are then
observed, if the Levi and Harper identities [7] are used.

Theorem 8. Let the Levi identity give ∗r, i.e. Γ ∗
r α ≡ (Γ −r ¬α) +r α,

where the contraction function −r satisfies Cr1 − 8. Then ∗r satisfies Rr1 − 8.

Proof. Rr1 − 4 follow easily.
Rr5: Suppose Γ ∗

r α is not roughly consistent. By Theorem 5, Γ ∗
r α|∼β, for any wff

β in LR. In particular, Γ ∗
r α|∼Mβ, and Γ ∗

r α|∼¬Mβ, for any wff β. By assumption,
Γ ∗

r α ≡ CR((Γ−r¬α)∪{α}. So, using deduction theorem and DR4, Γ−r¬α|∼¬α.
Hence by Cr1, 4, |∼¬α. Rr6 can be proved by observing that |∼α ≈ β if and only
if |∼¬α ≈ ¬β, and by using Cr6.

For proving Rr7, 8, we first note that Γ −r ¬α = Γ −r ¬Mα, by Observation
3(e) and Cr6 (↔ is a special case of ≈).

Thus Γ −r ¬α = Γ −r (¬(Mα ∧Mβ) ∧ (Mα → Mβ)). (*)
Secondly, because of DR5, DR6 and R2,

Γ +r Mα ∧Mβ = CR(Γ ∪ {α, β}), for any Γ . (**)
Rr7: Let γ ∈ Γ ∗

r (Mα ∧Mβ), i.e. Γ −r ¬(Mα ∧ Mβ) ∪ {(Mα ∧Mβ)}|∼γ. By
deduction theorem, Γ −r ¬(Mα ∧Mβ)|∼(Mα ∧Mβ) → γ.

So (Mα∧Mβ) → γ ∈ Γ −r¬(Mα∧Mβ) ⊆ Γ ⊆ Γ −r (Mα → Mβ)∪{Mα →
Mβ}, the last by Cr5, as Mα → Mβ is equivalent to a modal wff. It is then
easy to see that Γ −r (Mα → Mβ)|∼(Mα ∧Mβ) → γ. So (Mα ∧Mβ) → γ ∈
Γ −r ¬(Mα∧Mβ)∩Γ −r (Mα → Mβ) ⊆ Γ −r (¬(Mα∧Mβ)∧ (Mα → Mβ)),
by Cr7. Therefore, using (*), Γ −r ¬α|∼(Mα∧Mβ) → γ. As (Mα∧Mβ) is also
equivalent to a modal wff, by converse of deduction theorem (cf. Observation
3(d)), Γ −r ¬α ∪ {Mα ∧Mβ}|∼γ. By (**), Γ −r ¬α ∪ {α, β}|∼γ. As Γ −r ¬α ∪
{α, β} = Γ ∗

r α +r β, we have Rr7.
Rr8: Suppose ¬β �∈ Γ ∗

r α ≡ (Γ−r¬α)+rα, i.e. Γ−r¬α∪{α} � |∼¬β. Then it can be
shown that Γ−r¬α∪{α} � |∼Mα → ¬Mβ. Let γ ∈ Γ ∗

r α+rβ = Γ−r¬α+r{α, β}.
Using (*) and Cr8, we have Γ −r ¬α = Γ −r (¬(Mα ∧Mβ) ∧ (Mα → Mβ)) =
Γ −r (Mα → ¬Mβ) ∧ (Mα → Mβ)) ⊆ Γ −r (¬(Mα ∧Mβ)). Thus, by (**),
γ ∈ CR(Γ −r (¬(Mα ∧Mβ)) ∪ {α, β}) = Γ −r (¬(Mα ∧Mβ)) +r Mα ∧Mβ =
Γ ∗

r (Mα ∧Mβ). ��
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Theorem 9. Let −r be given by the Harper identity, i.e. Γ −r α ≡ Γ ∩ Γ ∗
r ¬α.

(a) If the revision function ∗r satisfies Rr1 − 4, Rr5′ and Rr6 − 8, then −r

satisfies Cr1 − 8.
(b) If the revision function ∗r satisfies Rr1 − 8, then −r satisfies Cr1 − 3, Cr4′

and Cr5 − 8.

Proof. Again Cr1 − 3, 6 follow easily.
Cr5: Let α be Lβ, for some wff β. If γ ∈ Γ , it can be shown that α → γ ∈
Γ ∩ Γ ∗

r ¬α. By DR2, γ ∈ (Γ −r α) +r α.
As in case of the previous theorem, let us note before proving Cr7, 8 that,

using Rr6 we have
Γ ∗

r ¬α = Γ ∗
r ¬Mα = Γ ∗

r ((¬Mα ∨ ¬Mβ) ∧ ¬Mα). (*)
Cr7: By (*) and Rr7, Γ ∗

r ¬α = Γ ∗
r ((¬Mα∨¬Mβ)∧¬Mα) ⊆ Γ ∗

r ¬(Mα∧Mβ)+r

¬Mα. Now let γ ∈ Γ ∗
r ¬α ∩ Γ ∗

r ¬β. Using deduction theorem,
Γ ∗

r ¬(Mα ∧Mβ)|∼¬Mα → γ. Similarly, Γ ∗
r ¬(Mα ∧Mβ)|∼¬Mβ → γ. Observe

that � M¬Mδ ↔ ¬Mδ. Thus by DR7, DR8, Γ ∗
r ¬(Mα∧Mβ)|∼¬(Mα∧Mβ) →

Mγ. As Rr2 holds and ¬(Mα ∧Mβ) is equivalent to a modal wff, Γ ∗
r ¬(Mα ∧

Mβ)|∼Mγ, by DR2. Finally, by DR5, we have γ ∈ Γ ∗
r ¬(Mα ∧Mβ).

Cr8: Suppose α �∈ Γ −r (Mα ∧ Mβ) ≡ Γ ∩ Γ ∗
r ¬(Mα ∧ Mβ). So α �∈ Γ , or

α �∈ Γ ∗
r ¬(Mα ∧ Mβ). In the former case, as Cr2, 3 already hold, we trivially

obtain Γ −r (Mα ∧Mβ) ⊆ Γ = Γ −r α. Consider the latter case.
Using DR5, ¬(¬Mα) �∈ Γ ∗

r ¬(Mα ∧Mβ). By Rr8,
Γ ∗

r ¬(Mα ∧Mβ) +r ¬Mα ⊆ Γ ∗
r (¬(Mα ∧Mβ) ∧ ¬Mα) = Γ ∗

r ¬Mα = Γ ∗
r ¬α.

So Γ ∗
r ¬(Mα ∧Mβ) ⊆ Γ ∗

r ¬(Mα ∧Mβ) +r ¬Mα ⊆ Γ ∗
r ¬α, and Cr8 holds.

(a) Cr4: As ¬α ∈ Γ ∗
r ¬α (by Rr2) as well as α ∈ Γ ∗

r ¬α (assumption), Γ ∗
r ¬α is

inconsistent, and hence roughly so. Thus by Rr5′, |∼¬¬α. It follows that |∼α.
(b) Cr4′: Lα,¬α ∈ Γ ∗

r ¬α, by assumption and Rr2. So, using S5 properties,
MΓ ∗

r ¬α � Lα as well as MΓ ∗
r ¬α � ¬Lα, implying that Γ ∗

r ¬α is not roughly
consistent. By Rr5, |∼¬¬α. Thus |∼α. ��

Observation 6
(a) Let R(−r), C(∗r) denote respectively, the revision and contraction func-
tions obtained by using the Levi and Harper identities. Then R(C(∗r)) = ∗r.
However, in general, C(R(−r)) �= −r.
(b) Rough belief revision and contraction coincide with the corresponding
classical notions if � α ↔ Lα for every wff α, i.e. all beliefs are defin-
able/describable (S5 collapses into classical propositional logic).

4 Conclusions

Some demands of ‘rough’ reasoning seem to be met by the rough consequence
logic LR. In particular, roughly consistent sets of premisses find rough models,
and roughly true propositions can be derived from roughly true premisses. This
offers grounds for the use of LR in a proposal of rough belief change. Beliefs
are propositions in LR. The postulates defining revision and contraction express
the constraints imposed on a set of beliefs during change – in particular, rough
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consistency is preserved, as is deductive closure with respect to LR. We obtain
expected consequences. (i) Classical belief change is a special case of rough belief
change (cf. Observation 6(b)). (ii) Unlike the classical case, the definitions are
not completely interchangeable (cf. Theorems 8,9 and Observation 6(a)). It is
interesting to observe that LR is equivalent to the well-studied paraconsistent
logic J of Jaśkowski, proposed in a different context altogether. The proposal
here is thus an example of paraconsistent belief change. In view of (ii) above, it
may be worthwhile to check if a different form of the Levi/Harper identity could
lead to complete interchangeability of the definitions. For example, one could
examine the suggestion given in [21] for a changed version of the Levi identity –
the ‘reverse’ Levi identity, viz. Γ ∗α ≡ (Γ + α) − ¬α.

Two of the integrity constraints in [1] postulate that during revision or con-
traction, the change effected on the belief set is minimal. More explicitly,
(a) there is minimal information loss during change, and
(b) the least important beliefs are retracted, when necessary.
A construction of contraction functions preserving (a) with respect to set in-
clusion, is given by the method of partial meet contraction. We have, in fact,
obtained a definition of rough contraction through this method – but that would
be matter for a separate report. The more computationally tractable method of
construction of contraction preserving (b), is based on the notion of epistemic
entrenchment (cf. [7]) – that sets a ‘priority’ amongst the beliefs of the system.
So during contraction/revision, the less entrenched (important) beliefs may be
disposed of to get the new belief set. There is a to and fro passage between an
entrenchment ordering and a change function satisfying the contraction postu-
lates, given by representation theorems. Our next goal is to try to define an
appropriate notion of entrenchment amongst rough beliefs. With the proposed
set (or possibly a modified set) of postulates of rough belief change, one can then
check for the conditions under which representation theorems may be obtained
– thus giving an explicit modelling of rough contraction.

References

1. Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial
meet functions for contraction and revision. J. Symb. Logic 50 (1985) 510–530.

2. Banerjee, M.: Rough truth, consequence, consistency and belief revision. In: S.
Tsumoto et al., editors, LNAI 3066: Proc. 4th Int. Conf. On Rough Sets and
Current Trends in Computing (RSCTC2004), Uppsala, Sweden, June 2004, pages
95–102. Springer-Verlag, 2004.

3. Banerjee, M., Chakraborty, M.K.: Rough consequence and rough algebra. In:
W.P. Ziarko, editor, Rough Sets, Fuzzy Sets and Knowledge Discovery, Proc. Int.
Workshop on Rough Sets and Knowledge Discovery (RSKD’93), pages 196–207.
Springer-Verlag, 1994.

4. Banerjee, M., Chakraborty, M.K.: Rough logics: a survey with further direc-
tions. In: E. Or�lowska, editor, Incomplete Information: Rough Set Analysis, pages
579–600. Springer-Verlag, 1998.

5. Chakraborty, M.K., Banerjee, M.: Rough consequence. Bull. Polish Acad. Sc.
(Math.) 41(4) (1993) 299–304.



Rough Belief Change 37
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Appendix

Proofs of some derived rules:
DR1: � α → β implies � Mα → Mβ. Therefore, by R1, we get the rule.
DR3: � ¬Mα ↔ M¬Mα. So, assuming ¬Mα, using DR1 we get M¬Mα.
Further assuming Mα therefore gives, by R2, Mα ∧ M¬Mα. But � (Mα ∧
M¬Mα) → β, for any β. Using DR1 again, we get the rule.
DR5: As � MMα → Mα, assuming Mα gives α by R1.
DR7: Assuming Mα → γ and Mβ → γ gives, by DR6, M(Mα → γ) and
M(Mβ → γ). Using R2 and DR1, we get (Mα → Mγ) ∧ (Mβ → Mγ). But
� (Mα → Mγ)∧ (Mβ → Mγ) → (Mα∨Mβ → Mγ). Hence by DR1 again, we
get the rule.
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DR8: � α → β implies � (β → γ) → (α → γ). So assuming β → γ gives, by
DR1, α → γ. ��

Some more derived rules:

DR9. α → β DR10. α → Mβ
� β → γ α → Mγ

α → γ α → Mβ ∧Mγ

DR11. � α DR12. α → Lβ
α → β α → L¬β

β ¬α

Proofs:
DR9, DR10: Similar to that of DR8 and DR7 respectively.
DR11: � α implies � (α → β) → Mβ. Assuming α → β gives Mβ, by DR1.
Finally, by DR5, we get β.
DR12: � Lγ → MLγ, for any wff γ. So, assuming α → Lβ, α → L¬β gives, by
DR9, α → MLβ,α → ML¬β. Then by DR10, we get α → MLβ ∧ML¬β. This
yields, by DR9 again, α → Lβ ∧ L¬β, or α → ¬(Lβ → Mβ). Using DR1, one
can obtain ¬¬(Lβ → Mβ) → ¬α, and thus (Lβ → Mβ) → ¬α (by DR8). But
� Lβ → Mβ. So, ¬α, using DR11. ��
Proof of Deduction Theorem (Theorem 1):
By induction on the number of steps of derivation of β from Γ ∪ {α}. Cases
corresponding to use of the rules R1 and R2 can be accounted for, by applying
DR1, DR5, DR6, DR9, DR10. ��
Proof of Soundness Theorem (Theorem 2):
One proves that R1 and R2 preserve rough truth. E.g., let us consider an arbi-
trary rough model (X,R, π) of the premisses of R1, viz. α,Mα → Mβ, where
the latter is an S5 theorem. By soundness of S5, Mα → Mβ is actually true in
(X,R, π), i.e. π(α) ⊆ π(β). Also π(α) = X , α being roughly true in (X,R, π).
Thus π(β) = X . Similarly, if π(α) = π(β) = X , then π(M(Mα ∧ Mβ)) =
π(α) ∩ π(β) = π(α) ∩ π(β) = X . But π(α) ∩ π(β) ≡ π(Mα ∧Mβ). Hence R2

preserves rough truth as well. ��
Proof of Theorem 4:
It is based on the S5 result that if any set of the form MΓ (LΓ ) is S5-consistent,
it must have a model in which all its wffs are true. ��
Proof of Theorem 5:
Compactness of � is used to get a finite subset {γ1, γ2, ..., γn} of Γ , for which
� ¬(Mγ1∧Mγ2∧ ...∧Mγn). As noted in Observation 2 (c), there is a wff γ such
that � Mγ ↔ (Mγ1 ∧Mγ2 ∧ ... ∧Mγn). So � ¬Mγ. Both Mγ and ¬Mγ are
then derived from {γ1, γ2, ..., γn} (and hence from Γ ) by using DR6, R2, DR1

and finally, DR3.

Proof of Theorem 6:
By applying the Deduction Theorem, DR12, DR1 and DR5. ��
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Abstract. We present a rough set approach to vague concept approxi-
mation. Approximation spaces used for concept approximation have been
initially defined on samples of objects (decision tables) representing par-
tial information about concepts. Such approximation spaces defined on
samples are next inductively extended on the whole object universe. This
makes it possible to define the concept approximation on extensions of
samples. We discuss the role of inductive extensions of approximation
spaces in searching for concept approximation. However, searching for
relevant inductive extensions of approximation spaces defined on samples
is infeasible for compound concepts. We outline an approach making this
searching feasible by using a concept ontology specified by domain knowl-
edge and its approximation. We also extend this approach to a framework
for adaptive approximation of vague concepts by agents interacting with
environments. This paper realizes a step toward approximate reasoning
in multiagent systems (MAS), intelligent systems, and complex dynamic
systems (CAS).
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1 Introduction

In this paper, we discuss the rough set approach to vague concept approxima-
tion. There has been a long debate in philosophy about vague concepts [18].
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Nowadays, computer scientists are also interested in vague (imprecise) concepts,
e.g, many intelligent systems should satisfy some constraints specified by vague
concepts. Hence, the problem of vague concept approximation as well as pre-
serving vague dependencies especially in dynamically changing environments is
important for such systems. Lotfi Zadeh [66] introduced a very successful ap-
proach to vagueness. In this approach, sets are defined by partial membership
in contrast to crisp membership used in the classical definition of a set. Rough
set theory [32] expresses vagueness not by means of membership but by employ-
ing the boundary region of a set. If the boundary region of a set is empty it
means that a particular set is crisp, otherwise the set is rough (inexact). The
non-empty boundary region of the set means that our knowledge about the set is
not sufficient to define the set precisely. In this paper, some consequences on un-
derstanding of vague concepts caused by inductive extensions of approximation
spaces and adaptive concept learning are presented. A discussion on vagueness
in the context of fuzzy sets and rough sets can be found in [40].

Initially, the approximation spaces were introduced for decision tables (sam-
ples of objects). The assumption was made that the partial information about
objects is given by values of attributes and on the basis of such information
about objects the approximations of subsets of objects form the universe re-
stricted to sample have been defined [32]. Starting, at least, from the early
90s, many researchers have been using the rough set approach for construct-
ing classification algorithms (classifiers) defined over extensions of samples. This
is based on the assumption that available information about concepts is partial.
In recent years, there have been attempts based on approximation spaces and
operations on approximation spaces for developing an approach to approxima-
tion of concepts over the extensions of samples (see, e.g., [48,50,51,56]). In this
paper, we follow this approach and we show that the basic operations related
to approximation of concepts on extension of samples are inductive extensions
of approximation spaces. For illustration of the approach we use approximation
spaces defined in [47]. Among the basic components of approximation spaces
are neighborhoods of objects defined by the available information about objects
and rough inclusion functions between sets of objects. Observe that searching
for relevant (for approximation of concepts) extensions of approximation spaces
requires tuning many more parameters than in the case of approximation of
concepts on samples. The important conclusion from our considerations is that
the inductive extensions used in constructing of algorithms (classifiers) are de-
fined by arguments “for” and “against” of concepts. Each argument is defined
by a tuple consisting of a degree of inclusion of objects into a pattern and a
degree of inclusion of the pattern into the concepts. Patterns in the case of rule-
based classifiers can be interpreted as the left hand sides of decision rules. The
arguments are discovered from available data and can be treated as the basic
information granules used in the concept approximation process. For any new
object, it is possible to check the satisfiability of arguments and select arguments
satisfied to a satisfactory degree. Such selected arguments are fused by conflict
resolution strategies for obtaining the classification decision. Searching for rel-



Rough Sets and Vague Concept Approximation 41

evant approximation spaces in the case of approximations over extensions of
samples requires discovery of many parameters and patterns including selection
of relevant attributes defining information about objects, discovery of relevant
patterns for approximated concepts, selection of measures (similarity or close-
ness) of objects into discovered patters for concepts, structure and parameters
of conflict resolution strategy. This causes that in the case of more compound
concepts the searching process becomes infeasible (see, e.g., [6,63]). We propose
to use as hints in the searching for relevant approximation spaces for compound
concepts an additional domain knowledge making it possible to approximate
such concepts. This additional knowledge is represented by a concept ontology
[3,4,5,26,27,28,45,46,48,49,57] including concepts expressed in natural language
and some dependencies between them. We assume that the ontology of concept
has a hierarchical structure. Moreover, we assume that for each concept from
ontology there is given a labelled set of examples of objects. The labels show
the membership for objects relative to the approximated concepts. The aim is
to discover the relevant conditional attributes for concepts on different levels of
a hierarchy. Such attributes can be constructed using the so-called production
rules, productions, and approximate reasoning schemes (AR schemes, for short)
discovered from data (see, e.g. [3,4,5,26,27,28,45,46,48,49,57])). The searching
for relevant arguments “for” and “against” for more compound concepts can be
simplified because using domain knowledge.

Notice, that the searching process for relevant approximation spaces is driven
by some selected quality measures. While in some learning problems such mea-
sures can be selected in a relatively easy way and remain unchanged during
learning in other learning processes they can be only approximated on the ba-
sis of a partial information about such measures, e.g., received as the result of
interaction with the environment. This case concerns, e.g., adaptive learning.
We discuss the process of searching for relevant approximation spaces in differ-
ent tasks of adaptive learning [1,7,12,15,21,22,24,58]. In particular, we present
illustrative examples of adaptation of observation to the agent’s scheme, incre-
mental learning, reinforcement learning, and adaptive planning. Our discussion
is presented in the framework of multiagent systems (MAS). The main conclu-
sion is that the approximation of concepts in adaptive learning requires much
more advanced methods. We suggest that this approach can be also based on
approximation of ontology. In adaptive learning, the approximation of concepts
is constructed gradually and the temporary approximations are changing dy-
namically in the learning process in which we are trying to achieve the approxi-
mation of the relevant quality. This, in particular, causes, e.g., boundary regions
to change dynamically during the learning process in which we are attempting to
find the relevant approximation of the boundary regions of approximated vague
concepts. This is consistent with the requirement of the higher order vagueness
[18] stating that the borderline cases of vague concepts are not crisp sets. In
Sect. 5, we point out some consequences of this fact for further research on the
rough set logic.
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This paper is an extension and continuation of several papers (see, e.g.,
[3,4,5,26,27,28,44,45,46,48,49,50,56]) on approximation spaces and vague concept
approximation processes. In particular, we discuss here a problem of adaptive
learning of concept approximation. In this case, we are also searching for rele-
vant approximation of the quality approximation measure. In a given step of the
learning process, we have only a partial information about such a measure. On
the basis of this information we construct its approximation and we use it for
inducing approximation spaces relevant for concept approximation. However, in
the next stages of the learning process, it may happen that after receiving new
information form the environment, it is necessary to reconstruct the approxima-
tion of the quality measure and in this way we obtain a new “driving force” in
searching for relevant approximation spaces during the learning process.

This paper is organized as follows. In Section 2, we discuss inductive exten-
sions of approximation spaces. We emphasize the role of discovery of special
patterns and the so called arguments in inductive extensions. In Section 3, the
role of approximation spaces in hierarchical learning is presented. Section 3,
outlines and approach based on approximation spaces in adaptive learning. In
Sect. 5 (Conclusions), we summarize the discussion presented in the paper and
we present some further research directions based on approximation spaces to
approximate reasoning in multiagent systems and complex adaptive systems.

2 Approximation Spaces and Their Inductive Extensions

In [32], any approximation space is defined as a pair (U, R), where U is a universe
of objects and R ⊆ U × U is an indiscernibility relation defined by an attribute
set.

The lower approximation, the upper approximation and the boundary region
are defined as crisp sets. It means that the higher order vagueness condition is
not satisfied [18]. We will return to this issue in Section 4.

We use the definition of approximation space introduced in [47]. Any approx-
imation space is a tuple AS = (U, I, ν), where U is the universe of objects, I
is an uncertainty function, and ν is a measure of inclusion called the inclusion
function, generalized in rough mereology to the rough inclusion [47,51].

In this section, we consider the problem of approximation of concepts over
a universe U∗, i.e., subsets of U∗. We assume that the concepts are perceived
only through some subsets of U∗, called samples. This is a typical situation in
machine learning, pattern recognition, or data mining [10]. In this section we
explain the rough set approach to induction of concept approximations. The
approach is based on inductive extension of approximation spaces.

Now we will discuss in more detail the approach presented in [50,51]. Let
U ⊆ U∗ be a finite sample and let CU = C∩U for any concept C ⊆ U∗. Let AS =
(U, I, ν) be an approximation space over the sample U . The problem we consider
is how to extend the approximations of CU defined by AS to approximation of C
over U∗. We show that the problem can be described as searching for an extension
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AS∗ = (U∗, I∗, ν∗) of the approximation space AS relevant for approximation of
C. This requires showing how to induce values of the extended inclusion function
to relevant subsets of U∗ that are suitable for the approximation of C. Observe
that for the approximation of C, it is enough to induce the necessary values of
the inclusion function ν∗ without knowing the exact value of I∗(x) ⊆ U∗ for
x ∈ U∗.

We consider an example for rule-based classifiers1. However, the analogous
considerations for k-NN classifiers, feed-forward neural networks, and hierarchi-
cal classifiers [10] show that their construction is based on the inductive extension
of inclusion function [51,44].

Usually, neighborhoods of objects in approximation spaces are defined by
some formulas called patterns. Let us consider an example. Let AS∗ be a given
approximation space over U∗ and let us consider a language L of patterns, where
x denotes an object from U∗. In the case of rule-based classifiers, patterns are
defined by feature value vectors. More precisely, in this case any pattern pat(x)
is defined by a formula

∧
{(a, a(x)) : a ∈ A and va ∈ Va}, where A is a given

set of condition attributes [32]. An object u ∈ U∗ is satisfying
∧
{(a, a(x)) : a ∈

A and v ∈ Va} if a(u) = a(x) for any a ∈ A, i.e., if and only if x,u are A-
indiscernible [32]. The set of objects satisfying pat(x) in U∗, i.e., the semantics
of pat(x) in U∗, is denoted by ‖pat(x)‖U∗ . Hence, ‖pat(x)‖U∗ = [x]A where
[x]A is the A-indiscernibility class of x ∈ U∗ [32]. By ‖pat(x)‖U we denote the
restriction of ‖pat(x)‖ to U ⊆ U∗, i.e., the set ‖pat(x)‖ ∩ U . In the considered
case, we assume that any neighborhood I(x) ⊆ U in AS is expressible by a
pattern pat(x). It means that I(x) = ‖pat(x)‖U ⊆ U , where ‖pat(x)‖U denotes
the meaning of pat(x) restricted to the sample U .

We assume that for any object x ∈ U∗, only partial information about x
(resulting, e.g., from a sensor measurement) represented by a pattern pat(x) ∈
L with semantics ‖pat(x)‖U∗ ⊆ U∗ defining the neighborhood of x in U∗ is
available. Moreover, only partial information such as ‖pat(x)‖U is available about
this set. In particular, relationships between information granules over U∗, e.g.,
‖pat(x)‖U∗ and ‖pat(y)‖U∗ , for different x, y ∈ U∗, are known, in general, only
to a degree estimated by using relationships between the restrictions of these
sets to the sample U , i.e., between sets ‖pat(x)‖U∗ ∩ U and ‖pat(y)‖U∗ ∩ U .

The set {pat(x) : x ∈ U} of patterns (defined by the whole set of attributes
A from from an approximation space AS) is usually not relevant for approxi-
mation of the concept C ⊆ U∗. Such patterns can be too specific or not general
enough, and can directly be applied only to a very limited number of new sample
elements. For example, for a new object x ∈ U∗ \ U the set ‖pat(x)‖U can be
empty.

However, by using some generalization strategies, one can induce from pat-
terns belonging to {pat(x) : x ∈ U} some new patterns that are relevant for
approximation of concepts over U∗.

1 For simplicity of reasoning we consider only binary classifiers, i.e. classifiers with two
decision classes. One can easily extend the approach to the case of classifiers with
more decision classes.
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Usually, first we define a new set PAT of patterns, which are candidates
for relevant approximation of a given concept C. A typical example of the set of
such patterns used in the case of rule based classifiers can be defined by dropping
some descriptors from patterns constructed over the whole set of attributes, i.e.,
{
∧
{(a, a(x)) : a ∈ B and va ∈ Va} : B ⊆ A and x ∈ U}. Among such patterns

we search for the left hand sides of decision rules.
The set PATTERNS(AS, L, C) can be selected from PAT using some quality

measures evaluated on meanings (semantics) of patterns from this set restricted
to the sample U . Often such measures are based on the numbers of examples
from the concept CU and its complement that support (satisfy) a given pattern.
For example, if the confidence coefficient

card(‖pat‖U ∩CU )
card(‖pat‖U )

, (1)

where pat ∈ PAT , is at least equal to a given threshold and the support

card(‖pat‖U ∩CU )
card(U)

, (2)

is also at least equal to a given threshold than we select pat as a member of
PATTERNS(AS, L, C).

Next, on the basis of some properties of sets definable by patterns from
PATTERNS(AS, L, C) over U , we induce approximate values of the inclusion
function ν∗(X, C) on subsets of X ⊆ U∗ definable by any such pattern and the
concept C. For example, we assume that the value of the confidence coefficient
is not changing significantly if we move from U to U∗, i.e.,

card(‖pat‖U ∩ CU )
card(‖pat‖U )

≈ card(‖pat‖U∗ ∩C)
card(‖pat‖U∗)

, (3)

Next, we induce the value of ν∗ on pairs (X, Y ) where X ⊆ U∗ is defin-
able by a pattern from {pat(x) : x ∈ U∗} and Y ⊆ U∗ is definable by a
pattern from PATTERNS(AS, L, C). For example, if pat(x) =

∧
{(a, a(x)) :

a ∈ A and va ∈ Va} and pat is obtained from pat(x) by dropping some con-
juncts then ν∗(‖pat(x)‖U∗ , ‖pat‖)U∗) = 1 because ‖pat(x)‖U∗ ⊆ ‖pat‖U∗ . In
a more general case, one can estimate the degree of inclusion of ‖pat(x)‖U∗

into ‖pat‖U∗ using some similarity degrees defined between formulas from PAT
and PATTERNS(AS, L, C). For example, one can assume that the values of
attributes on x which occur in pat are not necessarily the same but similar.
Certainly, such a similarity should be also defined or learned from data.

Finally, for any object x ∈ U∗ \ U we induce the degree ν∗(‖pat(x)‖U∗ , C)
applying a conflict resolution strategy Conflict res (e.g., a voting strategy) to
the family of tuples:

{(ν∗(‖pat(x)‖U∗ , ‖pat‖U∗), pat, ν∗(‖pat‖U∗ , C)) :pat∈PATTERNS(AS, L, C)}.
(4)
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Let us observe that conflicts can occur due to inductive reasoning in estimation
of values of ν∗. For some x ∈ U∗ and pat, pat′ ∈ PATTERNS(AS, L, C) the
values ν∗(‖pat(x)‖U∗ , ‖pat‖U∗), ν∗(‖pat(x)‖U∗ , ‖pat′‖U∗) can be both large (i.e.,
close to 1) and at the same time the value ν∗(‖pat‖U∗ , C) can be small (i.e., close
to 0) and the value of ν∗(‖pat′‖U∗ , C) can be large.

Values of the inclusion function for the remaining subsets of U∗ can be chosen
in any way – they do not have any impact on the approximations of C. Moreover,
observe that for the approximation of C we do not need to know the exact values
of uncertainty function I∗ – it is enough to induce the values of the inclusion
function ν∗. The defined extension ν∗ of ν to some subsets of U∗ makes it possible
to define an approximation of the concept C in a new approximation space AS∗.

To reduce the number of conditions from (4) one can use the so called argu-
ments “for” and “against” discussed, e.g., in [49].

Any C-argument, where C ⊆ U∗ is a concept is a triple

(ε, pat, ε′) (5)

where ε, ε′ ∈ [0, 1] are degrees and pat is a pattern from PATTERNS(AS, L, C).
The argument arg = (ε, pat, ε′) is satisfied by a given object x ∈ U∗, in

symbols x |=C arg, if and only if the following conditions are satisfied:

ν∗(‖pat(x)‖U∗ , ‖pat‖U∗) ≥ ε; (6)
ν∗(‖pat‖U∗ , C) ≥ ε′.

The idea of C-arguments is illustrated in Figure 1.

 

ε
'ε

Cpat

Fig. 1. C-argument

Instead of all conditions from (4) only some arguments “for” and “against”
C are selected and the conflict resolution strategy is based on them. For any
new object the strategy resolves conflicts between selected arguments “for” and
“against” C which are satisfied by the object.

The very simple strategy for selection of arguments is the following one. The
C-argument arg = (ε, pat, ε′) is called the argument “for” C if ε ≥ t and ε′ ≥ t′,
where t, t′ > 0.5 are given thresholds. The argument arg is “against” C, if this
argument is the argument for the complement of C, i.e., for U∗ \ C. However,
in general, this may be not relevant method and the relevant arguments should
be selected on the basis of more advanced quality measures. They can take into
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account, e.g., the support of patterns in arguments (see Section 4.1), their cover-
age, independence from other arguments, or relevance in searching for arguments
used for approximation of more compound concepts in hierarchical learning.

One can define the lower approximation and upper approximation of the con-
cept C ⊆ U∗ in the approximation space AS∗ by

LOW (AS∗, C) = {x ∈ U∗ : ν∗(I∗(x), C) = 1}, (7)
UPP (AS∗, C) = {x ∈ U∗ : ν∗(I∗(x), C) > 0}.

From the definition, in the case of standard rough inclusion [48], we have:

LOW (AS∗, C) ∩ U ⊆ C ∩ U ⊆ UPP (AS∗, C) ∩ U. (8)

However, in general the following equalities do not hold:

LOW (AS, C ∩ U) = LOW (AS∗, C) ∩ U, (9)
UPP (AS, C ∩ U) = UPP (AS∗, C) ∩ U.

One can check that in the case of standard rough inclusion [48] we have:

LOW (AS, C ∩ U) ⊇ LOW (AS∗, C) ∩ U, (10)
UPP (AS, C ∩ U) ⊆ UPP (AS∗, C) ∩ U.

Following the minimal length principle [41,42,52] some parameters of the in-
duced approximation spaces are tuned to obtain a proper balance between the
description length of the classifier and its consistency degree. The consistency
degree on a given sample U of data can be represented by degrees to which the
sets defined in equalities (9) are close. The description length is measured by
description complexity of the classifier representation. Among parameters which
are tuned are attribute sets used in the classifier construction, degrees of inclu-
sion of patterns defined by objects to the left hand sides of decision rules, degrees
of inclusion of patterns representing the left hand sides of decision rules in the
decision classes, the specificity or support of these patterns, parameters of the
conflict resolution strategy (e.g., set of arguments and parameters of arguments).

We can summarize our considerations in this section as follows. The induc-
tive extensions of approximation spaces are basic operations on approximation
spaces in searching for relevant approximation spaces for concept approxima-
tion. The approximation of concepts over U∗ is based on searching for relevant
approximation spaces AS∗ in the set of approximation spaces defined by induc-
tive extensions of a given approximation space AS. For any object x ∈ U∗ \ U ,
the value ν∗(I∗(x), C) of the induced inclusion function ν∗ is defined by conflict
resolution strategy from collected arguments for classifying x to C and from
collected arguments against classifying x to C.

3 Approximation Spaces in Hierarchical Learning

The methodology for approximation spaces extension presented in Section 2 is
widely used for construction of rule based classifiers. However, this methodology
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cannot be directly used for concepts that are compound because of problems
with inducing of the relevant set PATTERNS(AS, L, C) of patterns. For such
compound concepts, hierarchical learning methods have been developed (see,
e.g., [2,3,4,5,26,27,28,45,46,48,49,57]).

We assume that domain knowledge is available about concepts. There is given
a hierarchy of concepts and dependencies between them creating the so-called
concept ontology. Only partial information is available about concepts in the
hierarchy.

For concepts from the lowest level of hierarchy, decision tables with condition
attributes representing sensory measurements are given. Classifiers for these con-
cepts are induced (constructed) from such decision tables. Assuming that clas-
sifiers have been induced for concepts from some level l of the hierarchy, we are
aiming at inducing classifiers for concepts on the next l+1 level of the hierarchy.
It is assumed that for concepts on higher levels there are given samples of ob-
jects with information about their membership values relative to the concepts.
The relevant patterns for approximation of concepts from the l + 1 level are
discovered using (i) these decision tables, (ii) information about dependencies
linking concepts from the level l +1 with concepts from the level l, and (iii) pat-
terns discovered for approximation of concepts from the level l of the hierarchy.
Such patterns define condition attributes (e.g., by the characteristic functions of
patterns) in decision tables. Next, using the condition attributes approximation
of concepts are induced. In this way, also, the neighborhoods for objects on the
level l + 1 are defined. Observe also that the structure of objects on the higher
level l + 1 is defined by means of their parts from the level l. In this section,
for simplicity of reasoning, we assume that on each level the same objects are
considered. To this end, we also assume that rough inclusion functions from
approximation spaces are standard rough inclusion functions [48].

Now we outline a method of construction of patterns used for approxima-
tion of concepts from a given level of concept hierarchy by patterns used for
approximation of concepts belonging to the lower level of the hierarchy.

This approach has been elaborated in a number of papers cited above, in
particular in [49]. Assume that a concept C belongs to a level l + 1 of the
hierarchy. We outline the idea of searching for sets PATTERNS(AS, L, C) of
patterns for a concept C, where AS is an approximation space discovered for
approximation of the concept C and L is a language in which discovered patterns
are expressed.

To illustrate this idea, let us consider and example of a dependency for a
concept C from domain knwoledge:

if C1 and C2 then C, (11)

where C1, C2, C are vague concepts. Analogously, let us consider a dependency
for the complement of C:

if C′
1 and C′

2 then ¬C. (12)

In general, we should consider a set with many dependencies with different
concepts on the right hand sides of dependencies (creating, e.g., a partition of
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the universe) and in the process of generating arguments “for” and “against” a
selected concept C are involved other vague dependencies from the given set. Let
us recall that such a set of concepts and dependencies between them is specified
in a given domain knowledge.

To approximate the target concept C, relevant patterns for C and ¬C should
be derived. The main idea is presented in Figure 2 and Figure 3. We assume
that for any considered concept and for each pattern selected for this concept a
degree of its inclusion into the concept can be estimated.

In Figure 2 it is shown that for patterns pat1, pat2 (e.g., left hand sides of
decision rules in case of a rule based classifiers) for (or against) C1 and C2 and
their inclusion degrees ε1 and ε2 into C1 and C2, respectively, it is constructed
a pattern pat for (or against) C together with estimation of its inclusion degree
ε to the concept C.

 

 
 
 

2ε1ε

1C1pat
2C2pat

Cpat

ε

Fig. 2. An illustration of pattern construction
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Fig. 3. An illustration of production rule
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Figure 3 represents a construction of the target argument (ε, pat, ε′) for C
from arguments (ε1, pat1, ε

′
1) and (ε2, pat2, ε

′
2) for C1 and C2, respectively. Such

a construction

if (ε1, pat1, ε
′
1) and (ε2, pat2, ε

′
2) then (ε, pat, ε′) (13)

is called a production rule for the dependency (11). This production rule is true
at a given object x if and only if the following implication holds:

if x |=C1 (ε1, pat1, ε
′
1) and x |=C2 (ε2, pat2, ε

′
2) then x |=C (ε, pat, ε′). (14)

Certainly, it is necessary to search for production rules of the high quality
(with respect to some measures) making it possible to construct “strong” ar-
guments in the conclusion of the production from “strong” arguments in the
premisses of the production rule. The quality of arguments is defined by means
of relevant degrees of inclusion in these arguments and properties of patterns
(such as support or description length).

The quality of arguments for concepts from the level l + 1 can be estimated
on the basis properties of arguments for the concepts from the level l from which
these arguments have been constructed. In this estimation are used decision ta-
bles delivered by domain experts. Such decision tables consist of objects with
decision values equal to the membership degrees of objects relative to the con-
cept or to its complement. In searching for productions of high quality, we use
operations called constrained sums (see, e.g., [55]). Using these operations there
are performed joins of information systems representing patterns appearing in
arguments from the premise of production. The join is parameterized by con-
straints helping by tuning these parameters to filter the relevant objects from
composition of patterns used for constructing a pattern for the concept C on
the level l + 1 for the argument in the conclusion of the production rule. More-
over, the production rules may be composed into the so called approximation
reasoning schemes (AR schemes, for short). This makes it possible to generate
patterns for approximation of concepts on the higher level of the hierarchy (see,
e.g., [2,3,4,5,26,27,28,46,49]). In this way one can induce gradually for any con-
cept C in the hierarchy a relevant set of arguments (based on the relevant set of
patterns PATTERNS(AS, L, C) of patterns; see Section 3) for approximation
of C.

We have recognized that for a given concept C ⊆ U∗ and any object x ∈ U∗,
instead of crisp decision about the relationship of I∗(x) and C, we can gather
some arguments for and against it only. Next, it is necessary to induce from such
arguments the value ν∗(I(x), C) using some strategies making it possible to re-
solve conflicts between those arguments [10,48]. Usually some general principles
are used such as the minimal length principle [10] in searching for algorithms
computing an extension ν∗(I(x), C). However, often the approximated concept
over U∗ \ U is too compound to be induced directly from ν(I(x), C). This is
the reason that the existing learning methods are not satisfactory for inducing
high quality concept approximations in case of complex concepts [63]. There
have been several attempts trying to omit this drawback. In this section we have
discussed the approach based on hierarchical (layered) learning [57].
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There are some other issues which should be discussed in approximation of
compound vague concepts. Among them are issues related to adaptive learning
and construction or reconstruction of approximation spaces in interaction with
environments. In the following section, we consider an agent learning some con-
cepts. This agent is learning the concepts in interaction with the environments.
Different types of interaction are defining different types of adaptive learning
processes. In particular one can distinguish incremental learning [13,23,61,65], re-
inforcement learning [9,14,17,34,39,60], competitive or cooperative learning [15].
There are several issues, important for adaptive learning that should be men-
tioned. For example, the compound target concept which we attempt to learn
can gradually change over time and this concept drift is a natural extension for
incremental learning systems toward adaptive systems. In adaptive learning it
is important not only what we learn but also how we learn, how we measure
changes in a distributed environment and induce from them adaptive changes
of constructed concept approximations. The adaptive learning for autonomous
systems became a challenge for machine learning, robotics, complex systems,
and multiagent systems. It is becoming also a very attractive research area for
the rough set approach. Some of these issues will be discussed in the following
section.

4 Approximation Spaces in Adaptive Learning

There are different interpretations of the terms adaptive learning and adaptive
systems (see, e.g., [1,7,12,15,21,22,24,58]). We mean by adaptive a system that
learns to change with its environment. Our understanding is closest to the spirit
of what appears in [7,12]. In complex adaptive systems (CAS), agents scan their
environment and develop a schema for action. Such a schema defines interac-
tions with agents surrounding it together with information and resources flow
externally [7]. In this section, we concentrate only on some aspects of adaptive
learning. The other issues of adaptive learning in MAS and CAS will be discussed
elsewhere.

In particular, we would like to discuss the role of approximation spaces in
adaptive learning.

In this paper, we consider the following exemplary situation. There is an
agent ag interacting with another agent called the environment (ENV). Interac-
tions are represented by actions [11,62] performed by agents. These actions are
changing values of some sensory attributes of agents. The agent ag is equipped
with ontology of vague concepts consisting of vague concepts and dependencies
between them.

There are three main tasks of the agent ag: (i) adaptation of observation to
the agent’s scheme, (ii) adaptive learning of the approximations of vague con-
cepts, and (iii) preserving constraints (e.g., expressed by dependencies between
concepts).

Through adaptation of observation to the agent’s scheme agent becomes more
robust and can handle more variability [7].
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Approximation of vague concepts by the agent ag requires development of
searching methods for relevant approximation spaces which create the basis for
approximation of concepts. Observe that the approximations of vague concepts
are dynamically changing in adaptive learning when new knowledge about ap-
proximated concept is obtained by the agent ag. In particular, from this it follows
that the boundary regions of approximated concepts are dynamically changing
in adaptive learning. For each approximated concept we obtain a sequence of
boundary regions rather than a single crisp boundary region. By generating
this sequence we are attempting to approximate the set of borderline cases of a
given vague concept. Hence, if the concept approximation problem is considered
in adaptive framework the higher order postulate for vague concepts is satisfied
(i.e., the set of borderline cases of any vague concept can not be crisp) [18,44,50].

The third task of the agent ag requires learning of a planning strategy. This
is a strategy for predicting plans (i.e., sequences of actions) on the basis of ob-
served changes in the satisfiability of the observed concepts from ontology. By
executing plans the actual state of the system is transformed to a state satisfy-
ing the constraints. Changes in the environments can cause that the executed
plans should be reconstructed dynamically by relevant adaptive strategies. In
our example, actions performed by the agent ag are adjusting values of sensory
attributes which are controllable by ag.

Before we will discuss the mentioned above tasks in more detail we would like
to add some comments on interaction between agents.

The interactions among agents belong to the most important ingredients of
computations realized by multiagent systems [21]. In particular, adaptive learn-
ing agents interact, in particular, with their environments. In this section, we
will continue our discussion on adaptive learning by agents interacting with en-
vironment. Some illustrative examples of interactions which have influence on
the learning process are presented.

Let us consider two agents ag and ENV representing the agent learning some
concepts and the environment, respectively. By ags(t) and ENVs(t) we denote
(information about) the state of agents ag and ENV at the time t, respectively.
Such an information can be represented, e.g., by a vector of attribute values Aag

and AENV , respectively [51]. The agent ag is computing the next state ags(t+1)
using his own transition relation −→ag applied to the result of interaction of
ags(t) and ENVs(t). The result of such an interaction we denote by ags(t)⊕ENV

ENVs(t) where ⊕ENV is an operation of interaction of ENV on the state of ag.
Hence, the following condition holds:

ags(t) ⊕ENV ENVs(t) −→ag ags(t + 1). (15)

Analogously, we obtain the following transition for environment states:

ags(t) ⊕ag ENVs(t) −→ENV ENVs(t + 1). (16)

In our examples, we will concentrate on two examples of interactions. In the
first example related to incremental learning (see, e.g., [13,23,61,65]), we as-
sume that ags(t) ⊕ENV ENVs(t) is obtained by extending of ags(t) by a new
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information about some new sample of objects labelled by decisions. The struc-
ture of ags(t) is much more compound than in non-incremental learning. This
will be discussed in one of the following section together with some aspects
of adaptation in incremental learning. These aspects are related to searching
for relevant approximation spaces. In the discussed case, we also assume that
ags(t)⊕agENVs(t) = ENVs(t), i.e., there is no interaction of the agent ag on the
environment. In our second example, the agent ag can change the state of ENV
by performing some actions or plans which change the state of the environment.

4.1 Adaptation of Observation to the Agent’s Scheme

In this section, we present two illustrative examples of adaptation of observation
to the agent’s scheme. In the consequence of such an adaptation, the agent’s
scheme becomes more robust relative to observations.

In the first example, we consider instead of patterns pat(x) (see Section 2)
mode general patterns which are obtained by granulation of such patterns using
a similarity relation τ . Assuming that the object description pat(x) is defined by∧
{(a, a(x)) : a ∈ A and va ∈ Va} one can define such a similarity τ on descrip-

tion of objects, e.g., by a composition of similarity relations on attribute value
sets (see, e.g., [20,25,47])2. Then instead of patterns pat(x) we obtain patterns
patτ (x) with the semantics defined by ‖patτ (x)‖U∗ = {y ∈ U∗ : pat(x)τpat(y)}.
The definition of satisfiability of arguments (6) changes as follows

ν∗(‖patτ (x)‖U∗ , ‖pat‖U∗) ≥ ε; (17)
ν∗(‖pat‖U∗ , C) ≥ ε′.

Observe, that ‖patτ(x)‖U∗ is usually supported by many more objects than
‖pat(x)‖U∗ . Hence, if it is possible to tune the parameters of τ in such a way that
the first condition in (17) is satisfied for sufficiently large ε than the obtained
argument is much more robust than the previous one, i.e., it is satisfied by much
more objects than the previous one pat(x) and at the same time the requirement
related to the degrees of inclusion is preserved.

Our second example concerns construction of more robust production rules
and productions (sets of production rules corresponding to the same dependency
between vague concepts) (see Figure 4). Patterns in such productions represent
different layers of vague concepts and are determined by the linguistic values
of membership such as small, medium, high (see, e.g., [5]). These more general
patterns are constructed using information granulation [51]. Let us consider a
simple example of information granulation. Observe that the definition of the
satisfiability of arguments given by (6) is not unique. One can consider the
decision table (U, A, d), where A is a given set of condition attributes [32] and
the decision d is the characteristic function of the set Yε(pat) = {y ∈ U :
ν(‖pat(y)‖U , ‖pat‖U)) ≥ ε}. From this decision table can be induced the classifier
Class(pat) for the concept Y ∗

ε (pat) = {y ∈ U∗ : ν∗(‖pat(y)‖U∗ , ‖pat‖U∗)) ≥ ε}.
2 Note, that the similarity relation τ has usually many parameters which should be

tuned in searching for relevant similarity relations.
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Fig. 4. An illustration of production and AR scheme

Any object x ∈ U∗ is satisfying the C-argument (5) if and only if the following
condition is satisfied:

ν∗(Y ∗
ε (pat), C) ≥ ε′. (18)

The satisfiability of (18) is estimated by checking if the following condition holds
on the sample U :

ν(Yε(pat), C ∩ U) ≥ ε′. (19)

We select only the arguments (ε, pat, ε′) with the maximal ε′ satisfying (19) for
given ε and pat.

Assume that 0 = ε0 < . . . < εi−1 < εi < . . . < εn = 1. For any i = 1, . . . , n
we granulate a family of sets

{Y ∗
ε (pat) : pat ∈ PATTERNS(AS, L, C) and ν∗(Y ∗

ε (pat), C) ∈ [εi−1, εi)}
(20)

into one set Y ∗
ε (εi−1, εi). Each set Y ∗

ε (εi−1, εi) is defined by an induced classifier
Classε(εi−1, εi). The classifiers are induced, in an analogous way as before, by
constructing a decision table over a sample U ⊆ U∗. In this way we obtain a
family of classifiers {Classε(εi−1, εi)}i=1,...,n.

The sequence 0 = ε0 < . . . < εi−1 < εi < . . . < εn = 1 should be dis-
covered in such a way that the classifiers Classε(εi−1, εi) correspond to dif-
ferent layers of the concept C with linguistic values of membership. One of
the method in searching for such sequence can be based on analysis of a his-
togram. This histogram represents a function f(I) where I ∈ J , J is a given
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uniform partition of the interval [0, 1], and f(I) is the number of patterns from
{Y ∗

ε (pat) : pat ∈ PATTERNS(AS, L, C)} with the inclusion degree into C from
I ⊆ [0, 1].

4.2 Adaptation and Incremental Learning

In this section, we outline a searching process for relevant approximation spaces
in incremental learning. Let us consider an example of incremental concept ap-
proximation scheme Sch (see Figure 5). By Inf(C) and Inf ′(C) we denote
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Fig. 5. An example of incremental concept approximation scheme

a partial information about the approximated concept (e.g., decision table for
C or training sample) in different moments t and t + 1 of time, respectively3.
ENV denotes an environment, DS is an operation constructing an approxima-
tion space ASInf(C) from a given sample Inf(C), i.e., a decision table. IN is an
inductive extension operation (see Section 2) transforming the approximation
space ASInf(C) into an approximation space AS∗ used for approximation of the
concept C; Q denotes a quality measure for the induced approximation space
AS∗ on a new sample Inf ′(C), i.e., an extension of the decision table Inf(C).
For example, the value Q(AS∗, Inf ′(C)) can be taken as a ratio of the number of
objects from Inf ′(C) that are classified correctly (relative to the decision values
from Inf ′(C)) by the classification algorithm (classifier) for C defined by AS∗

(see Section 2) to the number of all objects in Inf ′(C).
The double-ended arrows leading into and out of ENV illustrate an inter-

action between agent ag and the environment ENV . In the case of a simple
incremental learning strategy only samples of C are communicated by ENV to
ag. More compound interactions between ag and ENV will be discuss later.
They can be related to reaction from ENV on predicted by ag decisions (ac-
tions, plans) (see, e.g., award and penalty policies in reinforcement strategies
[9,17,14,34,39,60]).
3 For simplicity, in Figure 5 we do not present time constraints.
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STR is a strategy that adaptively changes the approximation of C by modi-
fying the quality measure Q, the operation of inductive extension IN , and the
operation DS of constructing the approximation space ASInf(C) from the sam-
ple Inf(C). Dotted lines outgoing from the box labelled by SRT in Figure 5
are illustrating that the strategy STR after receiving the actual values of input
its parameters is changing them (e.g., in the next moment of time). To make
Figure 5 more readable the dotted lines are pointing to only one occurrence of
each parameter of STR but we assume that its occurrences on the input for
STR are modified too.

In the simple incremental learning strategy the quality measure is fixed. The
aim of the strategy STR is to optimize the value of Q in the learning process.
This means that in the learning process we would like to reach as soon as pos-
sible an approximation space which will guarantee the quality of classification
measured by Q to be almost optimal. Still, we do not know how to control by
STR this optimization. For example, should this strategy be more like the an-
nealing strategy [19], then it is possible to perform more random choices at the
beginning of the learning process and next be more “frozen” to guarantee the
high convergence speed of the learning process to (semi-)optimal approxima-
tion space. In the case of more compound interactions between ag and ENV ,
e.g., in reinforcement learning, the quality measure Q should be learned using,
e.g., awards or penalties received as the results of such interactions. This means
that together with searching for an approximation space for the concept it is
necessary to search for an approximation space over which the relevant quality
measure can be approximated with high quality.

The scheme Sch describes an adaptive strategy ST modifying the induced
approximation space AS∗ with respect to the changing information about the
concept C. To explain this in more detail, let us first assume that a procedure
newC(ENV,u) is given returning from the environment ENV and current infor-
mation u about the concept C a new piece of information about this concept (e.g.,
an extension of a sample u of C). In particular, Inf (0)(C) = newC(ENV, ∅) and
Inf (k+1)(C) = newC(ENV, Inf (k)(C)) for k = 0, . . .. In Figure 5 Inf ′(C) =
Inf (1)(C). Next, assuming that operations Q(0) = Q, DS(0) = DS, IN (0) = IN

are given, we define Q(k+1), DS(k+1), IN (k+1), AS
(k+1)

(Inf(k+1)(C)
, and AS∗(k+1) for

k = 0, . . . , by

(Q(k+1), DS(k+1), IN (k+1)) = (21)

= STR(Q(k)(AS∗(k), Inf (k+1)(C)),Q(k), IN (k), DS(k), AS∗(k), AS
(k)

Inf(k)(C)
)

AS
(k+1)

Inf(k+1)(C)
= DS(k+1)(Inf (k+1)(C)); AS∗(k+1) = IN (k+1)(AS

(k+1)

Inf(k+1)(C)
).

One can see that the concept of approximation space considered so far should
be substituted by a more complex one represented by the scheme Sch making
it possible to generate a sequence of approximation spaces AS∗(k) for k = 1, . . .
derived in an adaptive process of approximation of the concept C. One can also
treat the scheme Sch as a complex information granule [48].
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Fig. 6. An example of metastrategy in adaptive concept approximation

One can easily derive more complex adaptive schemes with metastrategies
that make it possible to modify also strategies. In Figure 6 there is presented an
idea of a scheme where a metastrategy MS can change adaptively also strategies
STRi in schemes Schi for i = 1, . . . , n where n is the number of schemes. The
metastrategy MS can be, e.g., a fusion strategy for classifiers corresponding to
different regions of the concept C.

4.3 Adaptation in Reinforcement Learning

In reinforcement learning [9,14,17,34,39,56,60], the main task is to learn the ap-
proximation of the function Q(s, a), where s, a denotes a global state of the
system and an action performed by an agent ag and, respectively and the real
value of Q(s, a) describes the reward for executing the action a in the state s. In
approximation of the function Q(s, a) probabilistic models are used. However,
for compound real-life problems it may be hard to build such models for such
a compound concept as Q(s, a) [63]. In this section, we would like to suggest
another approach to approximation of Q(s, a) based on ontology approximation.
The approach is based on the assumption that in a dialog with experts an ad-
ditional knowledge can be acquired making it possible to create a ranking of
values Q(s, a) for different actions a in a given state s. We expect that in the
explanation given by expert about possible values of Q(s, a) are used concepts
from a special ontology of concepts. Next, using this ontology one can follow hi-
erarchical learning methods (see Section 3 and [2,3,4,5,26,27,28,45,46,48,49,57]))
to learn approximations of concepts from ontology. Such concepts can have tem-
poral character too. This means that the ranking of actions may depend not only
on the actual action and the state but also on actions performed in the past and
changes caused by these actions.

4.4 Adaptation and Planning

A more compound scheme than what was considered in the previous section can
be obtained by considering strategies based on cooperation among the schemes
for obtaining concept approximations of high quality. In Figure 7 an adaptive
scheme for plan modification is presented. PLAN is modified by a metastrategy
MS that adaptively changes strategies in schemes Schi where i = 1, . . . , n. This
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Fig. 7. An example of adaptive plan scheme

is performed on the basis of the derived approximation spaces AS∗
i induced for

concepts that are guards (preconditions) of actions in plans and on the basis of
information Inf(x) about the state x of the environment ENV . The generated
approximation spaces together with the plan structure are adaptively adjusted
to make it possible to achieve plan goals.

The discussed example is showing that the context in which sequences of
approximation spaces are generated can have complex structure represented by
relevant adaptive schemes. The main goal of the agent ag in adaptive planning is
to search for approximation of the optimal trajectory of states making it possible
for the agent ag to achieve the goal, e.g., to keep as invariants some dependencies
between vague concepts. Observe, that searching in adaptive learning for such a
trajectory approximation should be performed together with adaptive learning
of many other vague concepts which should be approximated, e.g., preconditions
for actions, meta actions or plans.

One of the very important issue in adaptive learning is approximation of com-
pound concepts used in reasoning about changes observed in the environment.
The agent ag interacting with the environment ENV is recording changes in
the satisfiability of concepts from her/his ontology. These changes should be
expressed by relevant concepts (features) which are next used for construction
of preconditions of actions (or plans) performed by the agent ag. In real-life
problems these preconditions are compound concepts. Hence, to approximate
such concepts we suggest to use an additional ontology of changes which can be
acquired in a dialog with experts. All concepts from the ontology create a hierar-
chical structure. In this ontology relevant concepts characterizing changes in the
satisfiability of concepts from the original ontology are included together with
other simpler concepts from which they can be derived. We assume that such an
ontology can be acquired in a dialog with experts. Concepts from this ontology
are included in the expert explanations consisting of justifications why in some
exemplary situations it is necessary to perform some particular actions in a par-
ticular order. Next, by approximation of the new ontology (see Section 3 and
[2,3,4,5,26,27,28,45,46,48,49,57]) we obtain the approximation of the mentioned
above compound concepts relevant for describing changes. This methodology
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can be used not only for predicting the relevant actions, meta actions or plans
but also for the plan reconstruction. In our current projects we are developing
the methodology for adaptive planning based on ontology approximation.

5 Conclusions

In the paper, we have discussed some problems of adaptive approximation of
concepts by agents interacting with environments. These are the fundamental
problems in synthesis of intelligent systems. Along this line important research
directions perspective arise.

In particular, this paper realizes a step toward developing methods for adap-
tive maintenance of constraints specified by vague dependencies. Notice that
there is a very important problem related to such a maintenance which should
be investigated further, i.e., approximation of vague dependencies. The approach
to this problem based on construction of arguments “for” and “against” for con-
cepts from conclusions of dependencies on the basis of such arguments from
premisses of dependencies will be presented in one of our next paper.

Among interesting topics for further research are also strategies for modeling
of networks supporting approximate reasoning in adaptive learning. For example,
AR schemes and AR networks (see, e.g., [48]) can be considered as a step toward
developing such strategies. Strategies for adaptive revision of such networks and
foundations for autonomous systems based on vague concepts are other examples
of important issues.

In this paper also some consequences on understanding of vague concepts
caused by inductive extensions of approximation spaces and adaptive concept
learning have been presented. They are showing that in the learning process
each temporary approximations, in particular boundary regions are crisp but
they are only temporary approximations of the set of borderline cases of the
vague concept. Hence, the approach we propose is consistent with the higher
order vagueness principle [18].

There are some important consequences of our considerations for research on
approximate reasoning about vague concepts. It is not possible to base such
reasoning only on static models of vague concepts (i.e., approximations of given
concepts [32] or membership functions [66] induced from a sample available at
a given moment) and on multi-valued logics widely used for reasoning about
rough sets or fuzzy sets (see, e.g., [31,36,66,69]). Instead of this there is a need
for developing evolving systems of logics which in open and changing environ-
ments will make it possible to gradually acquire knowledge about approximated
concepts and reason about them.
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Abstract. 1This article introduces an approach to matching 2D image
segments using approximation spaces. The rough set approach intro-
duced by Zdzis�law Pawlak provides a ground for concluding to what
degree a particular set of similar image segments is a part of a set of im-
age segments representing a norm or standard. The number of features
(color difference and overlap between segments) typically used to solve
the image segment matching problem is small. This means that there
is not enough information to permit image segment matching with high
accuracy. By contrast, many more features can be used in solving the
image segment matching problem using a combination of evolutionary
and rough set methods. Several different uses of a Darwinian form of
a genetic algorithm (GA) are introduced as a means to partition large
collections of image segments into blocks of similar image segments. Af-
ter filtering, the output of a GA provides a basis for finding matching
segments in the context of an approximation space. A coverage form of
approximation space is presented in this article. Such an approximation
space makes it possible to measure the the extent that a set of image
segments representing a standard covers GA-produced blocks. The con-
tribution of this article is the introduction of an approach to matching
image segments in the context of an approximation space.

Keywords: Approximation space, coverage, genetic algorithm, image,
2D matching, rough sets, image segment.

1 Introduction

Considerable work on the application of rough set methods in image process-
ing has been reported (see, e.g., [37,2,18,51,52]). This paper introduces an ap-
proach to matching image segments in the context of approximation spaces.
The basic model for an approximation space was introduced by Pawlak in
1981 [30], elaborated in [28,32], generalized in [46,47,50], and applied in a num-
ber of ways (see, e.g., [36,38,39,48,11]). An approximation space serves as a
formal counterpart of perception or observation [28], and provides a frame-
work for approximate reasoning about vague concepts. Image segmentation (see,
1 Transactions on Rough Sets V, 2006, to appear.
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e.g.,[43,4,8,13,14,23,29,56,54]), and the image segment matching problem (see,
e.g.,[12,55,42,53]) have been widely studied . The goal of an image-matching
system is to match the segments from the two given images. Color and over-
lap are the two features of image segments that are commonly used to solve
the matching problem. To achieve more accuracy in matching image segments,
a combination of an evolutionary approach to finding sets of similar segments
and approximation spaces are used. The evolutionar approach is realized with
a genetic algorithm (GA) that partitions collections of image segments into sets
of similar image segments. Filtering out GA-produced sets of image segments
with the best match is carried out in the context of an approximation space.
This approach makes it possible to solve the image segment matching problem
with larger sets of features that yield more information about segments. This
approach also results in more accurate matching of image segments. An overview
of the 2D image segment matching method presented in this article is shown in
Fig. 1.

Fig. 1. 2D Image Segment Matching Steps

The matching process begins by forming a composite of a pair of images, then
carrying out color quantization (step 2 in Fig. 1). After that, the quantized image
is segmented, which results in a pair of segmented images. Next, feature values
of image segment pairs are obtained in step 5 in Fig. 1. Then a GA is applied
to a collection of image segment pairs, which are partitioned into sets. After
eliminating non-disjoint sets of segment pairs, the coverage of the remaining
sets of segment pairs is measured relative to a standard (norm), which is a set of
image segment pairs that represent certain knowledge. The end result in step 8 of
Fig. 1 is a collection of best matching pairs of image segments. This is in keeping
with the original view of approximation spaces as counterparts of perception
(in this case, approximations provide a framework for visual perception). The
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contribution of this paper is the use of approximation spaces to solve the image
segment matching problem.

This paper is organized as follows. A brief introduction to rough set theory is
given in Sect. 2. Set approximation is presented in Sect. 2.1, and the structure
of generalized approximation spaces is given in Sect. 2.2. The basic structure
of a Darwinian form of genetic algorithm is presented in Sect. 3. Fundamental
terminology for 2D digital images and classical 2D image processing techniques
are presented in Sect. 4 and Sect. 5, respectively. Upper and lower approximation
of sets of image segment pairs is described in Sect. 6 and Sect. 7, respectively.
A detailed presentation of GAs for image processing is given in Sect. 8. An
approach to matching image segments is presented in Sect. 9.

2 Basic Concepts About Rough Sets

This section briefly presents some fundamental concepts in rough set theory
that provide a foundation for the image processing described in this article.
In addition, a brief introduction to approximation spaces is also given, since
approximation spaces are used to solve the 2D matching problem.

2.1 Rough Set Theory

The rough set approach introduced by Zdzis�law Pawlak [31,32,33] provides a
ground for concluding to what degree a set image segment pairs representing a
standard cover a set of similar image segment pairs. The term “coverage” is used
relative to the extent that a given set is contained in standard set. An overview of
rough set theory and applications is given in [40,21]. For computational reasons,
a syntactic representation of knowledge is provided by rough sets in the form
of data tables. A data (information) table IS is represented by a pair (U , A),
where U is a non-empty, finite set of elements and A is a non-empty, finite
set of attributes (features), where a : U −→ Va for every a ∈ A. For each
B ⊆ A, there is associated an equivalence relation IndIS(B) such that IndIS(B)
=
{
(x, x′) ∈ U2|∀a ∈ B, a(x) = a(x′)

}
. Let U/IndIS(B) denote a partition of U

determined by B (i.e.,U/IndIS(B) denotes the family of all equivalence classes
of IndIS(B)), and let B(x) denote a set of B-indiscernible elements containing
x. B(x) is called a block, which is in the partition U/IndIS(B). For X ⊆ U , the
sample X can be approximated from information contained in B by constructing
a B-lower and B-upper approximation denoted by B∗X and B∗X , respectively,
where B∗X= ∪{B(x)|B(x) ⊆ X} and B∗X = ∪{B(x)|B(x) ∩X �= ∅}. The B-
lower approximation B∗X is a collection of blocks of sample elements that can be
classified with full certainty as members of X using the knowledge represented
by attributes in B. By contrast, the B-upper approximation B∗X is a collection
of blocks of sample elements representing both certain and possibly uncertain
knowledge about X . Whenever B∗X is a proper subset of B∗X , i.e., B∗X ⊂
B∗X , the sample X has been classified imperfectly, and is considered a rough
set.
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2.2 Approximation Spaces

This section gives a brief introduction to approximation spaces. The basic model
for an approximation space was introduced by Pawlak in 1981 [30], elaborated
in [28,32], generalized in [46,47,50], and applied in a number of ways (see,
e.g., [36,38,48,11]). An approximation space serves as a formal counterpart of
perception or observation [28], and provides a framework for approximate rea-
soning about vague concepts.

A very detailed introduction to approximation spaces considered in the con-
text of rough sets is presented in [40]. The classical definition of an approxima-
tion space given by Zdzis�law Pawlak in [30,32] is represented as a pair (U , Ind),
where the indiscernibility relation Ind is defined on a universe of objects U (see,
e.g., [44]). As a result, any subset X of U has an approximate characterization
in an approximation space. A generalized approximation space was introduced
by Skowron and Stepaniuk in [46,47,50]. A generalized approximation space is
a system GAS = ( U , N , ν ) where

• U is a non-empty set of objects, and P(U) is the powerset of U ,
• N : U → P(U) is a neighborhood function,
• ν : P(U) x P(U) → [0, 1] is an overlap function.

A set X ⊆ U in a GAS if, and only if X is the union of some values of the
neighborhood function. In effect, the uncertainty function N defines for every
object x a set of similarly defined objects [45]. That is, N defines a neighborhood
of every sample element x belonging to the universe U (see, e.g., [35]). Generally,
N can be created by placing constraints on the value sets of attributes (see, e.g.,
[40]) as in ( 1).

y ∈ N(x) ⇔ max
a

{dista(a(x), a(y))} ≤ ε. (1)

where dista is a metric on the value set of a and ε represents a threshold [40].
Specifically, any information system IS = (U,A) defines for any B ⊆ A a pa-
rameterized approximation space ASB = (U,NB, ν), where NB = B(x), a B-
indiscernibility class in the partition of U [45]. The rough inclusion function ν
computes the degree of overlap between two subsets of U. Let P(U) denote the
powerset of U . The overlap function ν is commonly defined as standard rough
inclusion (SRI) ν : P(U) x P(U) → [0, 1] as defined in (2).

νSRI(X,Y ) =

{
|X∩Y |
|X| , if X �= ∅,
1 , if X = ∅.

(2)

for any X , Y ⊆ U , where it is understood that the first term is the smaller of the
two sets. The result is that νSRI(X,Y ) represents the proportion of X that is
“included” in Y . However, we are interested in the larger of the two sets (assume
that the card(Y ) ≥ card(X)) because we want to see how well Y “covers” X ,
where Y represents a standard for evaluating sets of similar image segments.
Standard rough coverage (SRC) νSRC can be defined as in (3).

νSRC (X,Y ) =

{
|X∩Y |
|Y | , if Y �= ∅,
1 , if Y = ∅.

(3)
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In other words, νSRC (X,Y ) returns the degree that Y covers X . In the case
where X = Y , then νSRC (X,Y ) = 1. The minimum coverage value νSRC(X , Y )
= 0 is obtained when X ∩ Y = ∅ (i.e., X and Y have no elements in common).

3 Genetic Algorithms

Evolution has been characterized as an optimization process [9,19,25]. Darwin
observed “organs of extreme perfection” that have evolved [5]. Genetic algo-
rithms (GAs) belong to a class of evolutionary algorithms introduced by John
Holland in 1975 [19] as a means of studying evolving populations. A GA has
three basic features:

• Representation: each population member has a representation,
• Method of Selection: fitness of each population member is evaluated,
• Method of Variation (Crossover): create new population member by

combining the best features from pairs of highly fit individuals.

Crossover is the fundamental operation used in classical genetic algorithms. Mu-
tation is another method used in GAs to induce variations in the genes of a
chromosome representing a population member. The basic steps in a genetic
algorithm are described as follows. Let P (t) denote an initial population of indi-
vidual structures, each with an initial fitness at time t. Then an iteration begins.
Individuals in P (t) are selected for mating and copied to a mating buffer C(t)
at time step t. Combine individuals in C(t) to form a new mating buffer C′(t).
Construct a new population Pt+1 from Pt and C′(t). A desired fitness is used as
a stopping criterion for the iteration in a GA. A representation of a very basic
GA that uses only the crossover operation is given in Alg. 1.

Algorithm 1. Basic GA
Input : population Pt, mating pool Ct

Output: evolved population PT at time T
t = 0;
Initialize fitness of members of Pt;
while (Termination condition not satisfied) do

t = t + 1;
Construct mating pool Ct from Pt−1;
Crossover structures in Ct to construct new mating pool C′

t;
Evaluate fitness of individuals in C′

t;
Construct new population Pt from Pt−1 and C′

t;
end

GAs have proven to be useful in searching for matching segments in pairs of
images (see Sect. 8). In preparation for the GA approach to matching images,
some basic terminology (see Sect. 4), rudiments of classical 2D image processing
(see Sect. 5), and image matching using rough set methods (e.g., upper approx-
imation approach in Sect. 6 and lower approximation approach in Sect. 7) are
presented.
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4 Classical 2D Matching Terminology

This section gives an introduction to the basic definitions of technical terms
associated with the classical approach to 2D matching images.

Definition 1. ([12,24,17]) Pixel. A pixel (also referred to as a image element,
picture element, or pel) is an element of a digital image.

Definition 2. ([12]) Color. A color of a pixel is a mapping from a space of all
colors perceived by humans into a finite set of integer numbers grouped into three
components. Each component Red, Green and Blue is represented by a number
from 0 to 255. The total number of different colors represented by a pixel is
16,777,216.

Definition 3. ([12]) Grayscale. Grayscale represents a subset of RGB space,
where all components have equal values, eg. Red = Green = Blue. There are
only 256 such combinations and therefore the grayscale values can be represented
only by one number from the range 0 to 255.

In a digital image, a pixel (short for picture element) is an element that has a
numerical value that represents a grayscale or RGB intensity value. Pixels are
part of what are known as 4-neighborhoods, which provide a basis for identifying
image segments.

Definition 4. ([12,24]) 4-Neighborhood. A pixel p with coordinates (x,y) has
4 neighbors (2 vertical and 2 horizontal neighbors) at coordinates

(x + 1, y) , (x− 1, y) , (x, y + 1) , (x, y − 1)

Definition 5. ([12]) Pixel Membership. Pixel p1 = (x1, y1) belongs to a 4-
neighborhood of pixel p2 = (x2, y2) if and only if exactly one coordinate of p2

differs from the corresponding coordinate of p1. This difference must be equal to 1.

Definition 6. Segment. A segment is a collection of 4-neighborhood connected
pixels, which have the same color.

The process of matching segments described in this article is based on four
parameters described in the section 5.3. These parameters are degree of overlap
between segments, angle of rotation between segments, distance between mean
colors of segments and ratio of cardinalities of both segments. A combination
of a genetic algorithm and rough set-based post processing is used to combine
the information from all four parameters to find the best matches between the
segments.

The problem of finding the match between image segments is not trivial.
The four parameters required for matching image segments sometimes contain
contradictory information about the quality of match. Thus it is impossible to
find proper matches using only one or two of these parameters. The simplest
approach is to find the matches with the smallest distance in the space defined
by the four parameters. This space is denoted by Ω and consists of vectors where
each coordinate value is the difference of some parameter values.
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Definition 7. Image Segment Parameter Space. Define space Ω to be a
subspace of R4 such that

Ω = C × O × A × RC ⊆ R4.

where C, O, A and RC denote domains of the four parameters’ values, i.e. the
distance between mean colors of segments, degree of overlap between segments,
the angle of rotation between segments and ratio of cardinalities of both segments,
respectively.

The match between two points s, t ∈ Ω can be calculated as a weighted distance
between their parameters’ values.

Definition 8. Distance in Image Segment Parameter Space. The dis-
tance between two vectors s and t such that s, t ∈ Ω is defined to be a distance
between these points in the space Ω weighted by the vector ω = (C,O, A,Rc).

‖s− t‖ω =
√

C · (s1 − t1)2 + O · (s2 − t2)2 + A · (s3 − t3)2 + Rc · (s4 − t4)2.

where s = (s1, s2, s3, s4) and t = (t1, t2, t3, t4).

Here, the weight vector (C,O, A,Rc) denotes the importance of each parameter.
Each such vector and an ideal vector ζ define a measure of the quality of a
match.

Definition 9. Measure of Quality. A measure of quality of a match between
two segments s parametrized by the vector ω = (C,O, A,Rc) and the ideal solu-
tion ξ is given by the distance between points s and ξ in Ω space.

Qω,ξ(s) = ‖s− ξ‖ω .

The problem with the Def. 9 is with defining the ideal solution ξ. The first
two parameters in ω can be defined, where the difference in color C = 0 and
the overlap between two segments O = 1. The remaining two parameters (A
and Rc) in ω can be defined only with respect to some set of matches. It does
not make sense to define the ideal angle of rotation between segments, since it
depends on the images and can be different for any pair of images. Therefore,
the ideal solution can be defined only in the first two positions. In order to make
the remaining two parameters not influential, the ω vector must contain zeros
in the third and fourth position. As a result, the ideal vector is defined as

ζ = (0, 1, 0, 0) , ω = (x, y, 0, 0) .

where x, y ∈ R. Unfortunately, this solution uses only two parameters instead of
four. This can lead to wrong classification as shown in the Fig. 9 or Fig. 12 (◦
denotes the correct match and + denotes the closest match using Qω,ξ measure).

An algorithm which uses all four image segment features should generate a
set of possible good matches. A genetic algorithm (GA) is the example of such
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an algorithm. It is possible to design a genetic algorithm (see, e.g., GA Alg. 6
and Alg. 7) which orders image segments. This form of GA can be considered
an image segment matching algorithm, which uses all four features in the im-
age segment feature space. The basis for this form of image segment matching
algorithm is explained in Sect. 5.

5 2D Image Processing

This section introduces the basic concepts that will be used in a GA-based image
segment matching algorithm. At the 2D image processing level, the information
available about digital images comes from the locations of pixels and their RGB
values. The main goal of 2D image matching is to match all pixels from one
image with corresponding pixels from a second image. This operation is known
as image registration [7], [57], [3].

5.1 Image Segmentation

Quantization has been defined as a process of converting analog signal to digital
signal [10]. A quantizer is defined as a mapping from an uncountably infinite
space of values into a finite set of output levels. In proposed system the source
signal is digital image. Its domain is a finite set (pixels) of integer numbers
(colors). Since colors are represented by three components, namely Red, Green
and Bule, and each component is described by one byte, the input signal is
already finite. Thus, the term quantization is rather used as mapping from a
finite set of numbers to another finite set of numbers, where the cardinality of
the destination set is smaller than the source set. In what follows, the Lloyd
quantization algorithm [10] has been used, see Alg. 2.

Algorithm 2. The Lloyd Algorithm [10] (alg. Qn)
Input: image I , required number of colors n
Output: optimal codebook with n entires Copt

Initialize codebook C1 with n entries randomly, set m = 1
repeat

Based on codebook Cm and using nearest neighbour condition partition the
image I into the quantization cells Rm

Using centroid condition find optimal codebook Cm+1 for cells Rm

Set m = m + 1
until distortion caused by Cm small enough
Set Copt = Cm

A quantization mapping is usually expressed by a codebook. A codebook
is a set of n colors which are used to represent the original image. The map-
ping is performed by replacing the original color with the closest color from the
codebook. The optimal codebook of size n is the set of colors which minimizes
the distortion caused by the codebook. Here, the distortion is calculated as the



Matching 2D Image Segments with GAs and Approximation Spaces 71

squared difference between all components of the original color and its nearest
neighbor from the codebook.

The Lloyd algorithm consists of main two steps, which are repeated until
the distortion caused by the codebook is small enough. The first step is the
partitioning of the input image based on the current codebook. The partitioning
is performed using nearest neighbour condition, e.g. each pixel is assigned to the
cell closest to the color of given pixel. In the second step, a new codebook is
created based on the partitioning from the first step. Each codebook entry is
replaced by a centroid of all colors of pixels from the corresponding cell.

Color quantization is used as an aid in image segmentation. It works only
in the color space. The actual segmentation needs to take into account also a
spacial information, namely the position of pixels. Only the combination of color
and spatial information leads to identification of image segments. The averaging
step fills the gap regarding the use of spatial information. It’s only purpose is
to average information carried out by pixels representing similar colors. The
term similar is in this context precisely defined. Assume, that an original image
denoted by Io is given. First, quantization reducing number of colors to n1

is performed. This step is denoted by formula 4 to obtain a quantized image
denoted by Iqn1

(symbol Q represents the algorithm 2, where Io is the input
image I and n1 is the required number of colors n).

Io
Qn1−→ Iqn1

(4)

As a result of quantization, the quantized image Iqn1
contains only n1 colors.

In the next step, the information from Iqn1
image is used to average the colors

among all pixels, which are connected.
In quantized image, regions of pixels of the same color can be identified. These

regions create segments. To each such segment is assigned a color, which is an
average of all original colors from pixels belonging to this region. This step is
denoted by the formula in (5), see also Alg. 3.

Iqn1

AvIo−→ IAvn1
(5)

The image IAvn1
resulting from (5) has more than n1 colors, where pixels are

grouped into segments. This procedure, namely steps defined in (4) and (5), is

Algorithm 3. The Spacial Color Averaging (alg. AvIsn
)

Input: image I
Output: averaged image IA

Mark all pixels from I as not processed
foreach not processed pixel p in I do

Find segment S(p) in I containing pixel p
Assign to each corresponding pixel in IA from S(p) an average color of all
pixels from S(p)
Set all pixels from S(p) as processed

end
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repeated. The number of colors gradually decreases in consecutive iterations so
that the creation of segments can be observed.

The unwanted effect of the algorithm defined this way is that if a segment
is created at some step, there are no chances to change it in consecutive steps.
In other words, the first quantization plays a crucial role in entire process. In
addition, the resulting image still contains a lot of details (even though the
number of colors was reduced). An example of such image processed using seven
iterations described by the succession of mappings in (6), where numbers ni for
i = 1, 2, ..., 62 are 256, 64, 32, 16, 12, 8 and 4 are shown in left side of figure 2.

Isni−1

Qni−→ Iqni

AvIsni−1−→ IAvni
(6)

Fig. 2. Hydrant image after 7 iterations of (6) (left) and (7) (right)

To make the entire segmentation process more robust and force the creation of
bigger segments, one extra step for each stage defined by (6) is added. That is,
after the colors are recreated from the original image, a 3 by 3 median filter is
used. This causes almost uniform areas to blur even more and allows edges of
neighboring segments to overlap. As a result, all small details from the image are
lost, and big uniform segments are formed instead. The final formula describing
one step of this iterated algorithm is shown in (7).

Isni−1

Qni−→ Iqni

AvIsni−1−→ IAvni

M3x3−→ Isni
(7)

The M3x3 symbol denotes the median filter which is applied to each pixel
from an input image. The median filter is applied to 3 by 3 neighborhood of
given pixel p(x, y).

M3x3(p) = median{p(x− 1, y − 1), p(x, y − 1), p(x + 1, y − 1), p(x− 1, y),

p(x, y), p(x + 1, y), p(x− 1, y + 1), p(x, y + 1), p(x + 1, y + 1)} (8)

2 For i = 0 it is assumed that Isn0
= Io, and after each iteration Isni−1

= IAvni−1
.
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In order to find the median, all pixels are sorted by their color value and the one
in the middle (e.g. at the 5-th place) is chosen.

The right side of figure 2 shows the result of applying seven-step iterative
algorithm (with the same values as in previous example), where each step is
described by (7). There are still many small segments, but comparing with the
corresponding image, where the median filter was not used, their number was
greatly reduced.

Figure 3 shows all steps of applying formula (7). The image in the first row
and leftmost column is the original image. The second image in the first row, is
a result of 8-bit quantization. The third image shows the result of applying 3 by
3 median filter. In the second row, the second iteration is shown. Leftmost image
shows the result of averaging colors in segments from previous step. Middle image
shows result of 5-bit quantization and rightmost image shows result of applying
3 by 3 median filter. The remaining five rows are organized the same way as the
second row.

5.2 Segment Selection

At this stage it is assumed that a digital image is divided into segments. To
increase the chances of identifying the same segments in both images, image
quantization is performed on one large image, which is a composite of two in-
dividual images placed next to the other. After segmentation of the composite
image, the two images in the composite are extracted and the analysis continues
on the separate images. In this step, only some segments from all of the segments
created so far are selected. The reason for this is the high number of segments
and their shape. During a procedure to match shapes (described in section 8),
all segments from both images are matched using a GA search for segments,
which satisfy specific criteria. A GA is used because there is a need to work with
the smallest number of segments possible. In addition, the matching algorithm
requires that each segment satisfy some additional properties.

• Lower bound on segment size: avoid too few segments,
• Upper bound on segment size: avoid too many segments,
• Convexity factor: avoid perspective distortion.

Segment size is measured by the number of pixels belonging to a given segment.
A lower bound on segment size is need for the following reasons. First, if there
are not too many pixels, for example less than 10, the pixels can describe only
a small number of distinctive shapes. Matching of such shapes is very difficult,
since such a small number of pixels does not have enough power to uniquely
represent fairly distinctive shape. Second, if all tiny segments are considered,
the search space for matching segments becomes too large. There is a small
chance that these tiny shapes can be uniquely matched.

The explanation for upper bound of segment size is motivated by character-
istics of most images. Usually, images contain large areas of a solid color. For
outdoor images it can be the sky, for indoor images it can be the walls of the
room the image is shot in. These solid areas function as a background for the
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Fig. 3. Quantized images obtained by iterating (7)



Matching 2D Image Segments with GAs and Approximation Spaces 75

given scene. The shape of the background is not unique and it changes due to
perspective transformation. By setting upper bound for segment size all seg-
ments, which can be part of the background are filtered out. For this research,
this limit is set to be 30% of the entire image area.

The last constraint in matching image segments is the convexity factor, which
deals with perspective distortion and filters out shapes, which are difficult to
match. To get a deeper insight into this problem, consider what detected seg-
ments represent and how they differ from image to image. Each image is a 2D
representation of a 3D scene. Similarly, segments which are flat represent 3D
objects. The transformation from 3D space into 2D images flattens objects in a
sense that the information from different parts of an object is represented in a
small area. For example, consider the silhouette of a tripod. Given one segment
representing an entire tripod, each leg is separated from the other legs by some
background pixels (at least at the bottom of the tripod). Depending on the angle
of the camera, some legs can be quite close to each other. The shape of a tripod
changes dramatically with the change of view angle. Attempts to match such
shapes should be avoided. This example shows that objects which are spread in
all three dimensions are separated by some pixels not belonging to the object.
This condition is expressed for flat images in terms of convexity. A segment S
is convex if each point from a straight line connecting any two points in S also
belongs to S [12].

Definition 10. Convexity factor. The convexity factor for a segment S is a
number Cf (S) between 0 and 1 specifying how many lines between all combina-
tions of points from segment S lie entirely inside the segment S.

Cf (S) =
# lines entirely inside S

# all possible lines
.

To filter out segments which are potentially difficult to match, a threshold for a
convexity factor is set and only segments greater than the threshold are selected.
Based on experiments, a threshold of 0.5 has worked well.

Implementation of an algorithm used to calculate a convexity factor from the
definition requires n2 lines to be tested, where n is the number of segment pixels.
In order to speed up the calculations the estimation is performed. The estimation
process is applied on two levels. First, not all combinations of points are checked.
Instead, randomly selected 50 · n pairs of points are chosen. Second, instead of
checking if an entire line is contained within a segment, only checks for 7 points
are performed: middle point of a line, one fourth, three fourths and remaining
multiples of 1/8, namely, 1/8th, 3/8th, 5/8th and 7/8th of the line. In order to
calculate each of these points only as few as two additions and two divisions are
required, which makes this algorithm very fast with a complexity of O(n).

5.3 Feature Generation

In this section, the following four features used for matching segments are
elaborated.
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• degree of overlap between segments,
• angle of rotation between segments,
• distance between mean colors of segments,
• ratio of cardinalities of segment pairs.

This section describes how these features are extracted from two sets of seg-
ments (one set of segments for each image). Sect. 8 elaborates about how the
actual matching is performed using these features. First, recall that segments
are only two dimensional representations of three dimensional objects. Due to
the change of view angle, segments undergo transformation, which alters their
shape. Therefore, simple comparison of shapes is not enough to pair segments.

Before the matching can start, values for the four features for all combinations
of segments from both sets are generated. First two features are generated by
an algorithm which tries to find the biggest overlap between two segments.

Overlap. This parameter measures the overlap between two segments. To
calculate the overlap, two segments are plotted in one image using the same
color (one seg denotes the number of pixels belong to one segment). Pixels which
belong to both segments are denoted by a second color (two seg denotes the
number of pixels belonging to both segments). A measure of the overlap between
a pair of image segments is computed using Eq. 9.

overlap = e
− |Pone seg|

|Ptwo seg | . (9)

where Pi denotes pixels of i-th color. For |Pone seg| �= 0 and |Ptwo seg | = 0 it
is assumed that |Pone seg |

|Ptwo seg | = ∞. In other words, overlap measures how well one
segment matches the other. The minimum value for overlap is zero. In this case,
the number of pixels belonging to both segments is equal to zero, which means
that the segments do not intersect. A maximum overlap = 1 occurs when both
segments have the same same shape and are located at the same position. In the
case where one seg = 0, e0 = 1. For all other cases, overlap ε(0, 1).

The formula 9 was chosen for two reasons. First, it rescales the range of
overlap values from (0,∞) to (0, 1) interval. A finite interval is easier to handle
than the infinite one. Second, the exponential function compresses the output of
the original |Pone seg |

|Ptwo seg | function in the range where Pone seg is much greater than

Ptwo seg (for example, where |Ptwo seg |
|Pone seg | < 2.5, see figure 4). The absolute value

of the slope of the overlap function from Eq. 9 is much smaller than the slope
of the |Pone seg|

|Ptwo seg| function. This allows for easier comparison of overlap values in
the last stage of overlapping, e.g. when there is much more common pixels than
not matched ones. The smaller slope means that small changes in the ratios of
common/not matched pixels will not cause huge changes of the overlap function.

Fig. 5 illustrates best overlap. For better visualization, the two segments are
plotted using different colors. The intersection is denoted by the brightest shade
of gray. The lefthand side of Fig. 5 shows both segments with their original
rotation, scale and position. The righthand side of Fig. 5 shows the two seg-
ments with maximum overlap = 0.85. Observe that the area occupied by only
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Fig. 4. The result of applying exponential into overlap function

Fig. 5. Preliminary overlap of 2 segments(left), and best overlap (right)

one segment has been significantly decreased in comparison with the original
configuration.

Example 1. The figure 6 shows three sample steps out of many steps performed
during segment matching of the figure 2. These three steps explain the idea
behind the overlap formula introduced in the Eq. 9.

The first image in the figure 6 shows the first stage when the two segments
do not have any pixels in common. The area of the first image is 41083 pixels
and the area of the second one is 36447 pixels. Since there are no common pixels
|Pone seg | = 41083 + 36447 = 77530 and |Ptwo seg| = 0. From the assumption
for |Pone seg| �= 0 and |Ptwo seg| = 0 the fraction |Pone seg |

|Ptwo seg | = ∞. Because of the
formula 9 the overlap is not equal to infinity but a finite number e−∞ = 0. It is
easier to deal with finite numbers than infinite.

The second image shows one of the intermediate steps, where the two segment
have a lot of pixels in common, but also a lot of non overlapping pixels. The
area of the first segment, which does not intersect with the second one is 18219
pixels. The area of the second segment, which dos not intersect with the first
one is 13583 pixels. The area of overlap between these segments is 22864 pixels.
Therefore, |Pone seg | = 18219 + 13583 = 31802 and |Ptwo seg| = 22864. The

overlap is equal to overlap = e
− |Pone seg|

|Ptwo seg | = e−
31802
22864 = e−1.391 = 0.248.



78 M. Borkowski and J.F. Peters

Fig. 6. Three sample steps of segment matching

The third image shows the final result of search for the best overlap. The first
segment, was being translated, rotated and rescaled to maximize the overlap
function. In this position the overlap is maximum. Here, the |Pone seg| = 5540+
1097 = 6637 and |Ptwo seg| = 35350. Thus, overlap = e−

6637
35350 = e−0.187 = 0.828.

The figure 7 shows the entire process of finding the best overlap for segments
from figure 2. The horizontal axis denotes the iteration number. In each iteration
the position, rotation and scale for the first segment is altered to minimize the
overlap function. In the left part of the figure 7 a ratio |Pone seg|

|Ptwo seg | is plotted.
For the first several iterations it takes on high values compared to the end of
matching process. In fact, the ending of the matching process is more important,
since it can detect small differences in segments’ shapes. Therefore, the overlap
function, showed in the right part of the figure 7, is more sensitive to changes
in the second half of the matching process. When two segments do not overlap
significantly, the overlap function is close to zero. Only after there is a lot of
overlap between segments, see the middle image from the figure 6, the overlap
function changes more rapidly to emphasis the change in overlap.
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Fig. 7. The process of finding the best overlap for
|Pone seg |
|Ptwo seg | and overlap parameter

Angle. The angle of rotation is the relative angle which one segment must be
rotated to maximize the overlap between two segments.

Color. The previous two parameters (overlap and angle) dealt with geomet-
rical properties of segments. The color parameter takes into account the color of
a segment. Recall that all pixels from one segment are assigned the mean value
of the colors from the original image. Cdiff (i, j) denotes the distance between the
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RGB vectors of colors for a pair of segments. If the i-th segment’s color is denoted
by Ci = (Ri, Gi, Bi) and j-th segment’s color is denoted by Cj = (Rj , Gj , Bj),
then Cdiff (i, j) is defined by Eq. 10.

Cdiff (i, j) = |Ci − Cj | =
√

(Ri −Rj)2 + (Gi −Gj)2 + (Bi −Bj)2. (10)

Ratio of Cardinalities. The RatioofCardinalities parameter is a measure
of the relative size of a pair of segments. Let Si, Sj denote sets of 4-neighborhood
connected pixels for image segment i and j, respectively. Further, let RC denote
a measure of the Ratio of Cardinalities, which is defined by Eq. 11.

RC(i, j) =
|Si|
|Sj |

. (11)

5.4 Exhaustive Feature Matching

The goal of the matching algorithm is to produce a set of segment pairs so
that each segment of a pair belongs to a different images. Given n1 segments
identified in the first image and n2 segments identified in the second image, the
total number of possible pairs is n1 ·n2. From n1 ·n2 matches only small number
corresponds to the correct matches. In order to allow for grouping of several
image segment matches a hypothesis is introduced.

The central notion of the searching algorithm is a hypothesis. A hypothesis it
is a set of image segment matches. A hypothesis is created by assuming that all
four parameters for correctly matched segments are in the same range of values.
In other words, a hypothesis identifies a set of paired segments.

The algorithm searches through the space of matches using hypotheses to val-
idate each pair. It can be characterized by the average rotation angle between
segments and average ratio of cardinalities of both segments, where the average
is taken with respect to all pairs in the hypothesis. The rotation angle between
segments corresponds to the rotation between images and the ratio of cardinal-
ities corresponds to the difference in distances between object and the camera
for the two views. Thus, a hypothesis contains only pairs of segments, which are
similar to each other with respect to these two conditions. If the difference in
a segment’s shape is not caused by the change of view point, for example, the
difference comes from the fact that non-matching segments are being considered.
In that case, the values for relative rotation and ratio of cardinalities are random
for different pairs. When there is a big difference in these two parameters, it is
not possible to extract segments. On the other hand, if the difference in these
parameters is caused by the change of the view point, it is the same for any two
correctly paired segments. This allows for creation of bigger hypotheses with
higher probability that each contains only correct matches.

The four parameters are denoted by the following tables:

C(i, j): color difference,
O(i, j): overlap,
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A(i, j): angle of relative rotation,
RC(i, j): ratio of cardinalities.

where (i, j) denotes i-th segment from the first image and j-th segment from the
second image, respectively. Next, a brief description of how these parameters are
used to evaluate hypotheses, is given.

Ratio of cardinalities. This condition uses the ratio of cardinalities pa-
rameter RC(i, j). If all the pairs from a given hypothesis are correct matches,
then the value of this parameter for each pair should be in the same range. The
minimal and maximal values of RC(i, j) for all pairs from a given hypothesis are
found. The minimum and maximum values should be in a ±RCth range from the
mean value of all rations of cardinality for given hypothesis. If any RC(i, j) value
from given hypothesis is outside the interval [(1−RCth) ∗RC, (1+RCth) ∗RC]
then a given hypothesis is not valid and is discarded. Otherwise, the next check
is performed.

Angle of rotation. This check utilizes the assumption that for correct
matches the angles of rotation A(i, j) should be similar to each other for all
pairs from a given hypothesis. First, the average angle of all angles is calculated
(except for the pair added last). Then the rotation angle from the pair added
last, is compared to the average angle. If the absolute value of the difference is
greater than some threshold Ath, then the given hypothesis fails the check and
is removed from the system. Otherwise, the next check is performed.

Triangle property. After passing the Ratio of cardinalities and Angle of
rotation checks, a newly added pair in a given hypothesis is checked against
the triangle property. This property assures that a newly added pair preserves
the order in which any three segments are arranged in a triangle. Given three
segments in one image, one can connect the centroids of these segments creating
a triangle. The vertices of this triangle can be ordered in clockwise or counter-
clockwise order. After repeating the same procedure for corresponding segments
in a second image, a second triangle is formed. By checking the order of the
vertices in the second triangle, one can validate the correctness of matches. If
the order of vertices is not the same, this does not mean that the matching in
not correct. The order is preserved between two different views if the triangle
of interest is face up on the same side. The centroids of segments need not lay
on the plane in the real 3D space. This means that while moving from one view
to the second one, the triangle formed by these segments is flipped to the other
side, which reverses the order of the vertices. Nevertheless, this effect is very
hard to obtain. Notice, that the identified segments would have to look the same
from both sides. In most cases, the change in position between the two views is
too small to cause this to happen. Hence, despite this special case, the power of
discriminating bad matches is very useful for this application and is utilized in
this check to decrease the number of hypotheses.

In Alg. 4, the centroid of a segment from a new pair is used to build trian-
gles with all combinations of centroids from the hypothesis. The corresponding
triangles for segments from a second image are built as well. If the order of
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Algorithm 4. Matching Segments
Input: tables C(i, j),O(i, j), A(i, j), RC(i, j), centroids of all segments
Output: hypothesis with highest score, sets of matches M

Set the set of all hypotheses M = ∅, and NM = |M |;
for all segments si in the first image do

Create pairs Pi =
⋃

j Pij with all segments Sj from second image;
Remove from Pi all pairs Pij such that
C(i, j) > Cth or O(i, j) < Oth;
Add NP = |Pi| pairs to NM existing hypotheses
producing total of NM + NM ·NP + NP hypotheses;
foreach hypothesis Mk ∈ M do

Set RC =
∑

i,j
RC(i,j)
|Mk|

if ∃RC(i,j).RC(i, j) /∈ [(1 − RCth) · RC, (1 + RCth) ·RC] or
|A(inew , jnew) −meanP (i,j)∈Mk\P (inew ,jnew)A(i, j)| > Ath or
P (inew, jnew) changes triangle order then

Remove Mk from M ;
end

end
end

vertices for any of these corresponding triangles do not match, the hypothesis
fails the check and is removed from the set M . Otherwise, the algorithm finishes
the pruning part and moves to the growing step.

The last part of the matching Alg. 4 identifies the hypothesis, which is the
most likely to contain only correct matches. After applying algorithm 4, the set
M consists of many hypotheses, which satisfy all conditions. From them, only one
hypothesis is selected. The measure of correctness is the number of hypotheses
the pair associated with a pair of image segments. Each pair is assigned a number
based on its hypothesis count. Then each hypothesis is assigned a score, which is
the sum of all measures of correctness of all pairs belonging to a given hypothesis.
The hypothesis with the highest score is selected as the output of Alg. 4. The
list of pairs from the selected hypothesis consists of correctly paired segments
from both images.

6 Single Point Standard (Upper Approximation)

The goal of an image-matching system is to match segments from two given im-
ages. Consider, for example, Fig. 8 shows generated segments for the Wearever R©3

box scene. The left image in Fig. 8 contains 68 segments and the right image
contains 51 segments.

3 Trademark of the WearEver Company, http://www.wearever.com
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Fig. 8. Generated segments for the Wearever box scene

Let IS = (U , A) be an information system, where U is a set of pairs of image
segments,and A is a set of image segment attributes. The attributes in A are
defined relative to two segments, namely, degree of overlap, angle of rotation,
distance between mean colors and ratio of cardinalities. Hence, each attribute
value is indexed by two numbers which are the indices of the segments in a pair
x ∈ U . For example, let Si, Sj be sets of image segments for image i and image j,
respectively. Then the subscripting for the image segment pair (si, sj) specifies
that si ∈ Si and sj ∈ Sj . Most ranges of values for the segment attributes have
been adjusted so that they are in the interval [0, 1] or [−1, 1]. A summary of the
segment attributes is given in the table 1.

Table 1. Attributes’ ranges

color range [0, 1]. 0 means identical colors; 1, all channels differ by
the maximal value, e.g. the color value is 1 if one segments
has color (0, 0, 0) in RGB space and the second segment has
color (255, 255, 255) in RGB space (where for each channel
the range of values is from 0 to 255).

overlap range [0, 1]. 0 means no overlap between segments; 1, identical
segments (after translation, rotation and scaling).

angle of
rotation

range [−1, 1]. 0 means no rotation between segments; 1, rota-
tion by 180 degrees, where the sign denotes the direction of
rotation.

RC range [0,∞]. 1 means that both segments have the same area.
For RC ∈ [0, 1] the second segment is greater than the first
one. For RC > 1 the first segment is greater than the second
one.
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The angle of rotation for a proper match is unknown. Hence, use of this
attribute does not introduce any new information and is not considered in what
follows, since the standard for this attribute is unknown.

The rough matching is performed relative to the standard set B∗Z, which is
an ideal match of two image segments. In other words, B∗Z is the optimal case
for matching two identical image segments and such case may, but does not have
to exist in the real data.

All segment pairs are ranked based on the information represented by B∗Z.
Different upper approximations can be constructed by changing the equivalence
relation and subsets of attributes used to obtain B∗Z. In the original K-means
clustering algorithm [27], data points are arranged so that they are clustered
around K centers. In this work, an equivalence relation based on the K-means
clustering algorithm has been introduced (see, e.g., [37]), and which we summa-
rize in this section. Briefly, two segments si and sj are in relation IndK(B) if
and only if the values of all attributes for si and sj are associated with the same
cluster. IndK(B) is formally defined in Eq. 12.

IndK(B) =
{

(si, sj) ∈ U2| ∀a ∈ B,
∃l.1 ≤ l ≤ K, a (si) ∈ Cl ∧ a (sj) ∈ Cl

}
. (12)

where Cl denotes the l-th cluster from the set of K clusters. Let the set Z be
defined as in 13.

Z =

⎧⎨⎩
x ∈ U × U |
color(x) = 0,
overlap(x) = 1.

⎫⎬⎭ (13)

The set Z consists of matched pairs of segments with attribute values specified
in 13. Let B(x) be a block in the partition of U , which is a set of B-indiscernible
pairs of image segments containing x. At this point, there is interest in finding
the upper approximation of Z, which is described in (14).

B∗(Z) = {x | B(x) ∩ Z �= ∅}. (14)

Alg. 5 gives the steps for ranking segment matches using the upper approx-
imation. To each vote is assigned the same unit weight. Because cases where 2
attributes are used include cases where 1 attribute is used, the effective weights
are greater for cases with multiple attributes used. The table 2 show the effective
voting weights for the algorithm 5.

Figures 9 and 10 show sample voting results for two segments. A circle ◦
denotes the good match made by visual inspection of the two images, and a
cross + denotes the segment which is the closest to the standard Z. That is, for
a given segment i from the first image, a + denotes the segment jmin from the
second image such that

jmin = min
j

|Z − {C(i, j),O(i, j)}|.

Fig. 9 shows how the information is extracted from the generated attributes
using the upper approximation B∗(Z) of the set Z. The cross + shows that
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Algorithm 5. Matching Segments Using Upper Approximation
Input: set of attributes A = {C(i, j), O(i, j)}
Output: ranking of all segment pairs sij

for (all segments si in the first image) do
for (K=2 to (# of segments in the second image)/2) do

Perform K-means clustering for each attrib. separately
for (each subset B of the set of all attributes A) do

Find B∗(Z)
for (each segment sj from the second image) do

if (sj ∈ B∗(Z)) then
vote for pair sij

end
end

end
end

end

Table 2. Voting table T for algorithm 5

# of attributes in B # of votes effective # of votes

1 1 1

2 1 3

the best match using the distance between the given three parameters is with
segment number 44. However, the correct match is with segment number 18.
The number of votes for the segment number 18 is higher than the number of
votes for the segment 44. This means that using this algorithm, segment 18 is
more likely to be chosen as the match than segment 44.

The problem which is still to be solved is the high number of segments with
high votes. For example, in Fig. 9, segments 18, 20 and 33 have high votes and
it is not possible to select the best match. Hence, there is interest in considering
the lower approximation B∗(Z) of the set Z.

7 Interval Standard (Lower Approximation)

This section presents an extension of the method described in Sect. 6. The lower
approximation B∗(Z) is derived relative to Z, which is defined as the approxi-
mation of a set of image segment pairs that constitute a perfect match. However,
this is a bit unrealistic and not flexible. To allow for some tolerance in conclud-
ing that an image segment pair constitutes a match, an interval interpretation of
the attribute values of image segment pairs is introduced. That is, the attribute
values associated with image segment pairs in the set Z are parametrized by a
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Fig. 9. Voting results: ◦ good match, + the closest match

Fig. 10. Voting results: ◦ good match, + the closest match

parameter δ, which denotes the optimal value for each attribute. In effect, each
attribute value of each image segment pair x ∈ Z belongs to a small interval
containing δ. Using this approach, Z is defined as in Eq. 15.

Z =

⎧⎨⎩
x ∈ U × U |
color(x) ∈ (0, δ) ,
overlap(x) ∈ (1 − δ, 1) .

⎫⎬⎭ . (15)
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where the attribute values for each image segment pair x in Z belong to intervals
for color and overlap specified in Eq. 15.

For experiments, the parameter δ was set to 0.1. The results for different δ
values did not differ significantly from the ones shown here. The formula for
calculating the lower approximation is given in 16.

B∗(Z) = {x | B(x) ⊆ Z}. (16)

The new matching algorithm is essentially the same as Alg. 5, except that a
Find B∗(Z) operation has been added.

As can be seen from Fig. 12, the best results are obtained for the ‘single point
standard’. The notation circle ◦ in Fig. 12 denotes a good match made by visual
inspection of the two images, and a cross + indicates a segment pair which is
the closest to Z. The ‘interval standard’ method fails to yield one segment pair
as a good match. Instead, it yields several segments with equally high votes.
This means that this method cannot be used by itself as the deciding method
for solving the matching problem. However, the interval standard method can
be used as an aid, since the correct solution is usually among the segment pairs
with the highest votes.

Example 2. The figure 11 shows two images used to explain in more detail the
idea of the standard Z. Left part of the figure 11 shows the first image. It consists
of twelve segments created from the letters of a word ”Matching”. Notice, there
are only eight letters in a word ”Matching”. The remaining four segments are:
white area in the letter ’a’ (denoted by a.), a dot in ’i’ letter (denoted by i.),
upper white area in the letter ’g’ (denoted by g.) and lower white area in the
letter ’g’ (denoted by g.).

The right part of the image 11 shows the same letters as the first image.
Only, for the second image, they underwent geometrical transformations: image
warping, rescaling and rotation. In addition, brightness of each letter from the
second image was randomly altered.

In order to construct the standard Z the color difference and overlap param-
eters were calculated. The color difference values are shown in the table 3 and
overlap values are shown in the table 4. Values corresponding to proper matches
are denoted by bold face font in both tables. For example, the pair of segments
’M’ from both images is characterized by the pair (0.070,0.614), where the first
number denotes the color difference and the second number denotes the overlap
value for these two segments.

The creation of standard Z for given parameter δ is straight forward. From
the equation 15, standard is a set of all segment pairs for which the color dif-
ference and the overlap values are in some interval, e.g. color difference is less
than δ and overlap is greater than 1 − δ. For example, for δ = 0.1 there are
only two segments satisfying the above requirements. These pairs are (i.,i.) for
which color(i.,i.)= 0.075 < 0.1, overlap(i.,i.)= 0.913 > 0.9, and (g.,g.) for which
color(g.,g.)= 0.017 < 0.1, overlap(g.,g.)= 0.931 > 0.9, see tables 3 and 4. There-
fore, for δ = 0.1 the standard Z = {(i.,i.), (g.,g.)}. This means that the segments
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Fig. 11. Segments for example 2

Table 3. Color table

M a t c h i i. n g a. g. g.

M 0.070 0.574 0.671 0.066 0.572 0.532 0.532 0.639 0.068 0.784 0.784 0.784
a 0.579 0.064 0.707 0.549 0.606 0.492 0.492 0.213 0.647 0.778 0.778 0.778
t 0.654 0.693 0.048 0.595 0.091 0.875 0.875 0.528 0.657 0.773 0.773 0.773
c 0.118 0.539 0.628 0.011 0.532 0.545 0.545 0.596 0.126 0.792 0.792 0.792
h 0.571 0.608 0.179 0.531 0.045 0.753 0.753 0.449 0.585 0.647 0.647 0.647
i 0.481 0.452 0.898 0.564 0.760 0.069 0.069 0.554 0.558 0.483 0.483 0.483
i. 0.482 0.454 0.894 0.565 0.756 0.075 0.075 0.552 0.559 0.477 0.477 0.477
n 0.649 0.305 0.556 0.636 0.449 0.551 0.551 0.108 0.710 0.579 0.579 0.579
g. 0.082 0.617 0.679 0.171 0.573 0.507 0.507 0.666 0.078 0.705 0.705 0.705
a. 0.719 0.727 0.800 0.790 0.679 0.542 0.542 0.657 0.768 0.014 0.014 0.014
g. 0.715 0.726 0.799 0.786 0.677 0.540 0.540 0.657 0.764 0.017 0.017 0.017
g. 0.718 0.728 0.800 0.790 0.679 0.542 0.542 0.659 0.767 0.014 0.014 0.014

Table 4. Overlap table

M a t c h i i. n g a. g. g.

M 0.614 0.084 0.019 0.058 0.372 0.040 0.001 0.242 0.210 0.001 0.001 0.002
a 0.367 0.383 0.143 0.206 0.221 0.165 0.010 0.497 0.276 0.003 0.005 0.010
t 0.141 0.330 0.832 0.292 0.249 0.001 0.001 0.151 0.153 0.016 0.142 0.203
c 0.181 0.266 0.202 0.722 0.228 0.250 0.043 0.316 0.220 0.069 0.081 0.121
h 0.052 0.411 0.331 0.139 0.714 0.247 0.002 0.549 0.251 0.008 0.004 0.021
i 0.301 0.275 0.001 0.306 0.134 0.716 0.133 0.230 0.166 0.267 0.508 0.423
i. 0.003 0.256 0.001 0.113 0.032 0.216 0.913 0.033 0.018 0.421 0.675 0.807
n 0.333 0.390 0.116 0.368 0.239 0.149 0.012 0.847 0.280 0.001 0.002 0.024
g. 0.234 0.268 0.118 0.109 0.155 0.115 0.001 0.091 0.713 0.001 0.001 0.010
a. 0.001 0.045 0.320 0.102 0.028 0.185 0.726 0.001 0.007 0.861 0.818 0.721
g. 0.001 0.060 0.152 0.054 0.015 0.274 0.730 0.003 0.002 0.675 0.931 0.873
g. 0.001 0.108 0.251 0.130 0.042 0.425 0.618 0.337 0.039 0.726 0.865 0.860

i. and g. are the most similar segments in both images. The matching of the re-
maining segments is performed relative to this match.

The table 5 shows several sets Z for different values of parameter δ. The
bigger the parameter δ the more matches are included in the standard Z. This
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Table 5. Z table vs. δ parameter

δ Z (color, overlap)

0.05 ∅
0.1 {(i.,i.), (g.,g.)} {(0.075,0.913), (0.017,0.931)}
0.15 {(i.,i.), (a.,a.), (g.,g.), {(0.075,0.913), (0.014,0.861), (0.017,0.931),

(g.,g
.), (g.,g.), (g.,g.)} (0.014,0.865), (0.017,0.873), (0.014,0.860)}

0.2 {(t,t), (i.,i.), (n,n), {(0.048,0.832), (0.075,0.913), (0.108,0.847),
(a.,a.), (a.,g.), (g.,g.), (0.014,0.861), (0.014,0.818), (0.017,0.931),
(g.,g

.), (g.,g.), (g.,g.)} (0.014,0.865), (0.017,0.873), (0.014,0.860)}
0.3 {(t,t), (c,c), (h,h), {(0.048,0.832), (0.011,0.722), (0.045,0.714),

(i,i), (i.,i.), (n,n), (0.069,0.716), (0.075,0.913), (0.108,0.847),
(g,g), (a.,a.), (g.,a.), (0.078,0.713), (0.014,0.861), (0.014,0.726),
(a.,g.), (g.,g.), (g.,g

.), (0.014,0.818), (0.017,0.931), (0.014,0.865),
(a.,g.), (g

.,g.), (g.,g.)} (0.014,0.721), (0.017,0.873), (0.014,0.860)}

is the core of the rough set approach, where the definition of an ’ideal match’ is
not fixed, but can be adjusted based on available information and data. Notice,
for smaller δ values the standard Z is an empty set, which means that the
identical segments are not present in both images. On the other hand, bigger
δ values produce a standard, which contains incorrect matches. Nevertheless,
at this stage, the matching correctness is not crucial, in fact, segments (g.,g.)
form better match than (g.,g.), since (color, overlap) values for the first pair
are (0.014, 0.865) and for the second pair (0.014, 0.860). The correctness of this
match cannot be determined using only color difference and overlap values, but
other parameters must be used as well.

As shown in this example, the δ parameter allows for adjusting how strict the
definition of an ideal match is. This was not possible in the Upper Approximation
based approach, see equation 13.

8 Genetic Approach for Matching

The genetic approach for segment matching creates a framework for the search
based on any set of features extracted from images. Features can be extracted
using segments, lines or Harris corners [15]. In addition, because the genetic
algorithm is used, the search space can be very large. This allows for selection
of matches from large set of pixels from both images.

The central notion of a classical, Darwinian form of genetic algorithm is the
chromosome. It consists of genes. A gene represents a pair of matched features for
two images. There are many types of features that can be used in the algorithm.
More abstract forms (called also shapes) are source of features. Three methods of
deriving features have been considered so far, and are summarized in the table 6.
One of the functions of the gene is to hide the differences between the features for
the genetic algorithm. The genetic algorithm does not discern between the genes
and processes them the same way. The set of features creates a chromosome (or
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Fig. 12. Voting results: ‘interval standard’ (left) and ‘single point standard’ (right)

hypothesis as described in Sect. 5.4). A genetic algorithm tries to select the best
hypothesis, which consists of only correct matches. The term hypothesis is used
in the context of matching features from the images, since a hypothesis identifies
possible matches of features. The term chromosome is used in the context of the
genetic algorithm, since the chromosome is the member of the population.

The overview of the structures used in the algorithm is given in the figure 13.
Three kinds of feature generators are denoted by three paths at the bottom of
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Table 6. Features and their corresponding abstract forms

Abstract Form Complexity Features

point simple cross-correlation

line moderate cross-correlation, angle, RC

segment complex color, overlap, angle, RC

the image. The tasks of image processing blocks are generation of points, lines
and segments. After this step, the identified shapes are passed to the feature ex-
traction blocks. These blocks use selected shapes to generate features. The term
‘feature’ needs more explanation. Usually, the term feature means a mapping
of observed object in the universe to an attribute value. In this case, a feature
is not an attribute or aspect of a single image segment or pixel, but a result of
a comparison of a pair of image segments or pixels. In the case of the color of
a pair of image segments, a feature is the difference in the average colors of the
two segments. In general, a feature F(x, y) for a pair of observed objects x and
y is a scalar from some pre-defined range [a, b] as defined in (17).

F : (x, y) −→ c ∈ R a ≤ c ≤ b. (17)

In addition, there is one point κ ∈ [a, b], which denotes the value for which a
pair of objects are not discernible with respect to the given feature. For example,
for colors of image segment pairs, the possible range of color differences can be
defined as [0, 1], where 0 denotes two identical colors and 1 denotes the maximum
difference of colors allowed by an image’s color depth. In this case, κ = 0.

The fact that the features are calculated as the difference between attributes
for pairs of digital images is denoted by the ‘fusion’ box in the figure 13. The
procedure represented by the fusion box combines the information from pairs of
images to generate feature values.

Next, the description of the chromosome is given (see figure 14). A gene rep-
resents a match between two shapes from a pair of images. This is indicated
by a pair of indices of two corresponding shapes. Genes in each chromosome
are divided into three blocks: point block, line block and segment block. Each
block contains indices of matched shapes of a given type, namely point, line or
segment.

The number of genes in each group can be zero. The genetic algorithm does
not discern between different types of genes as long as both halves of the gene
are of the same type. The order of the chromosome is the sum of lengths of all
blocks, e.g. np + nl + ns.

The current version of the genetic algorithm has only image segment genes
implemented. Therefore, point and line blocks are always empty. The creation of
the genes is constrained by the rules, which assure that only reasonable matches
are considered. These rules control the color difference, overlap and the ratio
of cardinalities. Let color−th, overlap−th, rc−th denote the maximum values
allowed for the color difference, overlap and the ratio of cardinalities for a pair
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Fig. 13. The overview of matching algorithm

Fig. 14. The chromosome. Each block contains indices of matched shapes.

of image segments, respectively. For the ratio of cardinalities parameter the
threshold denotes the the maximum difference of the areas of a pair of segments,
e.g. for rc−th = 2 it means that 1

2 ≤ RC ≤ 2. Table 7 gives constraints for
feature values during the creation of genes.

Let Ch denote a chromosome from a population evaluated by a genetic algo-
rithm. Further, let ang, ang, rc th, ang th denote angle of rotation, average an-
gle of rotation, ratio of cardianlities threshold, and angle threshold, respectively.
The RC(ik, jk) parameter was defined in Eq. 11 and the RC symbol denotes
the mean value of ratios of cardinalities for all genes from given chromosome.
The subscript k iterates from 1 to the number of genes in given chromosome
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Table 7. Rules for creating genes

Feature Condition

Color ≤ color th

Overlap ≥ overlap th

RC ≥ 1/rc th ∧ ≤ rc th

such that subscripts (ik, jk) iterate through all image segments contained in the
chromosome, see figure 14. The fitness of Ch is determined using Eq. 18.

Fitness(Ch) =

⎧⎪⎪⎨⎪⎪⎩
1 ∀k (1 −RCth) · RC ≤ RC(ik, jk) ≤ (1 + RCth) · RC

∧ maxk |ang(ik, jk) − ang| < ang th
∧ passes the triangle check,

0 otherwise.
(18)

The fitness function given in Eq. 18 is maximally selective, e.g. it causes
chromosomes to survive and reproduce with equal probability or die and be
removed from the population.

Alg. 6 is based on the standard procedure for genetic algorithms described in
[6]. The only genetic operator implemented so far is the crossover operation. New
genes are not created by Alg. 6. All unique genes appearing in the population
are created before evolutionary iteration starts. The crossover operation cannot
split halfs of existing genes. Two chromosomes of lengths n1 and n2 can only
be concatenated to form a new chromosome of a length n1 + n2, which contains
all genes from the original two chromosomes. The repetition of left and right
handed parts of the gene within a chromosome is not allowed either. This means
that only two chromosomes with different sets of left and right handed parts can
mate and create an offspring.

After implementing Alg. 6, all genes are scored using the Alg 7. The sym-
bol γ denotes partitioning introduced by the chromosomes. Each chromosome
forms a block of genes. Genes within a block (a chromosome) are considered to

Algorithm 6. Genetic Algorithm
Input: tables C(i, j),O(i, j), A(i, j), RC(i, j), centroids of all segments
Output: ordered set of matches O
Create the set of genes S using rules from table 7
while (stop condition is not true) do

Apply genetic operator: crossover
Evaluate fitness function
Remove chromosomes with fitness function below some threshold

end
Order all genes into set O using GA based ordering algorithm, see alg. 7
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Algorithm 7. GA based ordering
Input: set of genes G, partitioning of this set γ
Output: ordered set of matches O
Create the set of counters for all genes in the set G
Set initial values of these counters to 0
for (all blocks from γ) do

for (all genes si from given block) do
Increase counter of gene si by 1

end
end
Return sorted in descending order list of genes O = sort(G)

be indiscernible. Since, different chromosomes can contain the same genes this
partitioning forms a tolerance relation.

The genes are sorted by the number of chromosomes they appear into. The
chromosome which contains the most common genes is selected as the output of
the simulation. All sorted genes are returned in the set O.

9 2D Matching with Approximation Spaces

This section considers an approach to processing the output from the genetic
algorithm 6 within the context of an approximation space. Let S be a set of n
best genes returned by Alg. 6. Let B(x) be a block of genes equivalent to x, and
let B∗S be the lower approximation of the set S. There is advantage in using
B∗S as a standard, and measuring how well B∗S “covers” each block. In this
way, it is possible to select a block covered to the greatest extent by the standard,
and which represents the set of best image segment matches. The steps of this
approach to finding the set of best matches are given in Alg. 8.

The results are shown in the plot in the figure 15. In the plot from the
figure 15, n = 114 is called the pool of genes. The most important thing to
observe in this plot is that rough coverage does better between genes numbers
37 and 49. This means Alg. 8 sorts the genes better than the pure GA represented
in Alg. 6.

9.1 Tolerance Relation vs. Equivalence Relation

The output of the GA in Alg. 6 is a set of hypotheses. In other words, Alg. 6
produces sets containing pairs of image segments. Each such set (hypothesis)
corresponds to one chromosome. The crossover operation in Alg. 6 produces a
chromosome, which is a copy of two input chromosomes. Therefore, the resulting
partitioning is a tolerance relation (see property 1). Alg. 9 converts the tolerance
relation induced by Alg. 6 into an equivalence relation. This is done by removing
the overlapping sets in the partition created by Alg. 6.



94 M. Borkowski and J.F. Peters

Algorithm 8. The algorithm for selecting best matches using rough cover-
age
Input: set of all possible matches
Output: ordered set of matches

Run the GA to get the partitioning of the genes
Create and initialize to 0 the rough coverage weights for each gene
Create a set S of top n genes
for (each block B(xi)) do

Evaluate rough inclusion value

Rcover(B(xi), S) =
|B(xi) ∩B∗S|

|B∗S|

Increase weights of genes from B(xi) by Rcover(B(xi), S)
end

GA 2,000,000 chromosomes
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Fig. 15. Rough coverage vs. % correct matches with 2,000,000 chromosomes

Observe that Alg. 9 searches for the chromosomes with the highest weight
(starting from the longest chromosomes) and removes all chromosomes which
have non-empty intersection with a given chromosome. The resulting partition-
ing of all genes C forms an equivalence relation (see theorem 2).

The down side to converting the tolerance relation induced by Alg. 6 into an
equivalence relation is the reduction of the number of blocks. For example, in
case of the system consisting of ≈818,000 chromosomes with 4920 genes where
the longest chromosome has length 29, the conversion to equivalence relation
decreases the number of blocks with cardinality greater than one to 1229. This
means that the number of blocks after the conversion is less than 0.16% of the
number of tolerance relation blocks.

Experimental results show that the equivalence relation does not have enough
power to improve the ordering produced by the GA in Alg. 6. This is due to the
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Algorithm 9. Conversion of tolerance rel. to equivalence relation
Input: set of genes G, set of chromosomes Ch, partitioning γ of set G

expressed by sets ChI ∈ Ch
Output: partitioning Ind of set G, which is an equivalence relation

Order all genes using GA based ordering, see alg. 71

Set Ind to ∅2

/* starting from the longest chromosomes */
for (all chromosomes’ lengths I) do44

for (all chromosomes ChI of the length I) do5

Find the chromosome chmax ∈ ChI with the highest score and move6

it to Ind
for (all chromosomes chk in Ch) do7

if (chk ∩ chmax �= ∅) then8

Remove chk from Ch1010

end11

end12

end13

end14

GA 818,000 chromosomes
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Fig. 16. Ratio of correct matches for tolerance and equivalence relation

small number of blocks in the equivalence relation. Fig. 16 shows sample results
for 818,000 chromosomes.

Definition 11. Tolerance Relation (from [21])
A binary relation τ ⊆ X ×X is called a tolerance relation if and only if τ is

1. reflexive, an object is in relation with itself xτx,
2. symmetric, if xτy then yτx.
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Definition 12. Equivalence Relation (from [21])
A binary relation R ⊆ X ×X is called an equivalence relation if and only if
R is a tolerance relation and is

1. transitive, if xRy and yRz then xRz.

Property 1. The crossover operator in the GA in Alg 6 produces a partitioning
of the set of genes G, such that created blocks have non-empty intersection.

Proof. Let Ch denote the set of all chromosomes chk such that Ch =
⋃

k chk. If
L denotes the longest chromosome in Ch, then all chromosomes can be grouped
into subsets of Ch, namely ChL, ChL−1, . . . , ChI , . . . , Ch1, where ChI ⊆ Ch and
index I denotes the length of the chromosome4. The crossover operator crossov
can be defined as follows:

crossov : ChI × ChJ → ChK , chk = crossov(chi, chj)

where chi ∈ ChI , chj ∈ ChJ , chk ∈ ChK , K = I + J , K ≥ 2 and I, J ≥ 1.
After applying the crossover operator, the chromosomes chi and chj are not

removed from the set of all chromosomes Ch, i.e. chi, chj , chk ∈ Ch. This means
that a gene gt which belongs originally to chi belongs also to the chromosome
chk.

Now, for any chromosome chk of order greater than 1.

∀gt∈chk
∃l �= k | gt ∈ chl

From the fact that the order of a chromosome chk is greater than 1, we have
chk = crossov(chi, chj). What follows is that l = i or l = j. �

The above proof shows that for each chromosome chk of order K > 1 there
exists a chromosome of order less than K, which is a part of chk. Therefore, for
each such chromosome chk there exist at least two chromosomes that have non
empty intersection with it.

Theorem 1. The GA in Alg 6 produces a partitioning of the set of all genes,
which corresponds to the tolerance relation γ (and not an equivalence relation).

Proof. Chromosomes chk produced by the GA consist of the genes from the set
G. Each chromosome can be considered as a block of indistinguishable genes.
Thus, they create a partitioning of the set G. This partitioning corresponds to
the tolerance relation if the relation determined by this partitioning is reflexive
and symmetric. The relation γ is based on the fact that two elements belong to
the same chromosome, i.e.

xγy iff ∃i | x ∈ chi and y ∈ chi

4 The index written with a small letter by a chromosome ch does not indicate the
length of the chromosome.
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where chi ∈ Ch. From the definition, belonging to a set is symmetric and
reflexive.

The partitioning Ch covers all genes G because Ch includes the set of chro-
mosomes of order one Ch1, which is identical with the set of all genes G, i.e.
Ch1 = G, Ch1 ∈ Ch therefore G ⊆ Ch.

The relation γ is not an equivalence relation because chromosomes ch may
have non-empty intersections (from property 1). As the result, the transitivity
constraint is not satisfied. If for k �= l holds x ∈ chk, y ∈ chk, y ∈ chl, z ∈ chl

and x /∈ chl and z /∈ chk then xγy, yγz and x is not in relation with z. �

Theorem 2. Alg. 9 converts the partition γ produced by the GA in Alg. 6 into
a partition Ind which is an equivalence relation.

Proof. The partitioning Ind is a subset of the partition γ. Thus, there are two
conditions that must be satisfied for the partition Ind to be an equivalence
relation:

– all blocks from Ind must have empty intersection:
The step 10 from algorithm 9 assures that all subsets from Ind have empty
intersection.

– all blocks from Ind must cover the entire space of genes G:
The step 4 from algorithm 9 starts with the longest chromosomes and ends
with the shortest ChL, ChL−1, . . . , ChI , . . . , Ch1, where L is the length of the
longest chromosome in the system. The shortest chromosome is of length
one, i.e. it is a gene. Notice, none of the genes which are not included in
the set Ind will be removed from the set Ch1 because their intersection with
chmax is empty. This means that in the last iteration of loop 4 all missing
genes will be added to the set Ind. �

9.2 Classical vs. Rough Matching Methods

Classical 2D image segment matching method is usually limited to two fea-
tures, namely, color difference and the overlap between two segments (see, e.g.,
[12,55,24]). This is a severe limitation because these two features do not yield
enough information to permit accurate image segment matching. By contrast,
in designing genes in chromosomes used in evolutionary 2D segment matching,
the number of features associated with a gene can be quite large.

In this study, four parameters for each gene and 2,000,000 chromosomes have
been used. Similarly, using the rough coverage methods, the number of features
(parameters) associated with an image segment can be large. In this study,
four features are used, namely, the distance between mean colors of segments,
degree of overlap between segments, the angle of rotation between segments
and ratio of cardinalities of both segments. In addition, rough coverage values
computed within the context of an approximation space, represent a comparison
between each of the blocks containing similar pairs of image segments and a set
representing a norm (e.g., B∗S). In effect, the rough coverage matching method
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Fig. 17. Rough coverage vs. % of correct matches (zoomed Fig. 15)

yields better results because it uses more information about the image segments
being compared. This is one way to explain the plots in Fig. 15.

In Fig. 17, the left upper corner of the plot from Fig. 15 is shown. Fig. 17
illustrates the advantage of the rough coverage approach compared to the other
methods. Recall, that the problem of segment matching is considered in the
context of 2D to 3D conversion. The 2D to 3D conversion algorithm takes as an
input paired pixels, which are generated from paired segments. Any mismatch at
the segment matching stage propagates to the pixel matching stage and finally
into 2D to 3D conversion. Therefore, a crucial requirement for image segment
matching is to generate as little wrong matches as possible. Fig. 17 shows that
the rough coverage approach yields the biggest number of correct matches, i.e.
the first wrong match occurs after finding 47 good matches. For the weights gen-
erated by the GA used in in Alg. 8, the first mismatch occurs after only 36 cor-
rect matches. Hence, rough coverage greatly reduces the number of mismatches,
which improves the robustness of the overall 2D to 3D conversion process.

10 Conclusion

An approach to using a combination of genetic algorithms and approximation
spaces in solving the image segment matching problem is given in this paper.
Approximation spaces are used as a form of visual perception of pairs of images,
which is step towards 2D image classification in the case where one of the paired
images plays the role of a reference image for matching purposes.
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Abstract. Pawlak recently introduced rough set flow graphs (RSFGs)
as a graphical framework for reasoning from data. No study, however,
has yet investigated the complexity of the accompanying inference algo-
rithm, nor the complexity of inference in RSFGs. In this paper, we show
that the traditional RSFG inference algorithm has exponential time com-
plexity. We then propose a new RSFG inference algorithm that exploits
the factorization in a RSFG. We prove its correctness and establish its
polynomial time complexity. In addition, we show that our inference
algorithm never does more work than the traditional algorithm. Our dis-
cussion also reveals that, unlike traditional rough set research, RSFGs
make implicit independency assumptions regarding the problem domain.

Keywords: Reasoning under uncertainty, rough set flow graphs.

1 Introduction

Very recently, Pawlak [7,8] introduced rough set flow graphs (RSFGs) as a graph-
ical framework for uncertainty management. RSFGs extend traditional rough set
research [9,10] by organizing the rules obtained from decision tables as a directed
acyclic graph (DAG). Each rule is associated with three coefficients, namely,
strength, certainty and coverage, which have been shown to satisfy Bayes’ theo-
rem [7,8]. Pawlak also provided an algorithm to answer queries in a RSFG and
stated that RSFGs are a new perspective on Bayesian inference [7]. No study,
however, has yet investigated the complexity of Pawlak’s inference algorithm,
nor the complexity of inference in RSFGs.

In this paper, our analysis of the traditional RSFG inference algorithm [7,8]
establishes that its time complexity is exponential with respect to the number
of nodes in a RSFG. We then propose a new inference algorithm that exploits
the factorization in a RSFG. We prove the correctness of our algorithm and es-
tablish its polynomial time complexity. In addition, we show that our algorithm
never does more work than the traditional algorithm, where work is the number
of additions and multiplications needed to answer a query. The analysis in this
manuscript also reveals that RSFGs make implicit assumptions regarding the
problem domain. More specifically, we show that the flow conservation assump-
tion [7] is in fact a probabilistic conditional independency [13] assumption.
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It should be noted that the work here is different from our earlier work [2]
in several important ways. In this manuscript, we propose a new algorithm for
RSFG inference and establish its polynomial time complexity. On the contrary,
we established the polynomial complexity of RSFG inference in [2] by utilizing
the relationship between RSFGs and Bayesian networks [11]. Another difference
is that here we show that RSFG inference algorithm in [7,8] has exponential
time complexity, an important result not discussed in [2].

This paper is organized as follows. Section 2 reviews probability theory, RS-
FGs and a traditional RSFG inference algorithm [7,8]. That the traditional in-
ference algorithm has exponential time complexity is shown in Section 3. In
Section 4, we propose a new RSFG inference algorithm. We prove the correctness
of this new algorithm and establish its polynomial time complexity in Section 5.
Section 6 shows that it never does more work than the traditional algorithm. In
Section 7, we observe that RSFGs make independence assumptions. The conclu-
sion is presented in Section 8.

2 Definitions

In this section, we review probability theory and RSFGs.

2.1 Probability Theory

Let U = {v1, v2, . . . , vm} be a finite set of variables. Each variable vi has a finite
domain, denoted dom(vi), representing the values that vi can take on. For a
subset X = {vi, . . . , vj} of U , we write dom(X) for the Cartesian product of
the domains of the individual variables in X , namely, dom(X) = dom(vi) ×
. . . × dom(vj). Each element c ∈ dom(X) is called a configuration of X . If c is
a configuration on X and Y ⊆ X , then by cY we denote the configuration on Y
by dropping from c the values of those variables not in Y .

A potential [12] on dom(U) is a function φ on dom(U) such that the following
two conditions both hold: (i) φ(u) ≥ 0, for each configuration u ∈ dom(U), and
(ii) φ(u) > 0, for at least one configuration u ∈ dom(U). For brevity, we refer
to φ as a potential on U rather than dom(U), and we call U , not dom(U), its
domain [12]. By XY , we denote X ∪ Y .

A joint probability distribution (jpd) [12] on U is a function p on U such that
the following two conditions both hold: (i) 0 ≤ φ(u) ≤ 1, for each configuration
u ∈ U , and (ii)

∑
u∈U φ(u) = 1.0.

Example 1. Consider five attributes Manufacturer (M), Dealership (D), Age
(A), Salary (S), Position (P ). One jpd p(U) on U = {M,D,A, S, P} is depicted
in Appendix I.

We say X and Z are conditionally independent [13] given Y , denoted I(X,Y, Z),
in a joint distribution p(X,Y, Z,W ), if

p(X,Y, Z) =
p(X,Y ) · p(Y, Z)

p(Y )
,
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where p(V ) denotes the marginal [12] distribution of a jpd p(U) onto V ⊆ U
and p(Y ) > 0.

The following theorem provides a necessary and sufficient condition for deter-
mining when a conditional independence holds in a problem domain.

Theorem 1. [5] I(X,Y, Z) iff there exist potentials φ1 and φ2 such that for
each configuration c on XYZ with p(cY ) > 0, p(c) = φ1(cXY ) · φ2(cY Z).

Example 2. Recall the jpd p(U) in Example 1. The marginal p(M,D,A) of p(U)
and two potentials φ(M,D), φ(D,A) are depicted in Table 1. By definition,
conditional independence I(M,D,A) holds in p(U) as p(M,D,A) = φ(M,D) ·
φ(D,A).

Table 1. The marginal p(M,D, A) of p(U) in Example 1 and potentials φ(M,D) and
φ(D, A)

M D A p(M,D, A) M D φ(M, D) D A φ(D, A)
Toyota Alice Old 0.036 Toyota Alice 0.120 Alice Old 0.300
Toyota Alice Middle 0.072 Toyota Bob 0.060 Alice Middle 0.600
Toyota Alice Young 0.012 Toyota Dave 0.020 Alice Young 0.100
Toyota Bob Old 0.024 Honda Bob 0.150 Bob Old 0.400
Toyota Bob Middle 0.036 Honda Carol 0.150 Bob Middle 0.600
Toyota Dave Old 0.002 Ford Alice 0.050 Carol Middle 0.600
Toyota Dave Middle 0.006 Ford Bob 0.150 Carol Young 0.400
Toyota Dave Young 0.012 Ford Carol 0.050 Dave Old 0.100
Honda Bob Old 0.060 Ford Dave 0.250 Dave Middle 0.300
Honda Bob Middle 0.090 Dave Young 0.600
Honda Carol Middle 0.090
Honda Carol Young 0.060
Ford Alice Old 0.015
Ford Alice Middle 0.030
Ford Alice Young 0.005
Ford Bob Old 0.060
Ford Bob Middle 0.090
Ford Carol Middle 0.030
Ford Carol Young 0.020
Ford Dave Old 0.025
Ford Dave Middle 0.075
Ford Dave Young 0.150

2.2 Rough Set Flow Graphs

Rough set flow graphs are built from decision tables. A decision table [10] rep-
resents a potential φ(C,D), where C is a set of conditioning attributes and D is
a decision attribute.

Example 3. Recall the five attributes {M,D,A, S, P} from Example 1. Consider
the set C = {M} of conditioning attributes and the decision attribute D. Then
one decision table φ(M,D) is shown in Table 2. Similarly, decision tables φ(D,A),
φ(A,S) and φ(S, P ) are also depicted in Table 2.
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Table 2. Decision tables φ(M, D), φ(D, A), φ(A,S) and φ(S, P )

M D φ(M, D) D A φ(D, A)
Toyota Alice 120 Alice Old 51
Toyota Bob 60 Alice Middle 102
Toyota Dave 20 Alice Young 17
Honda Bob 150 Bob Old 144
Honda Carol 150 Bob Middle 216
Ford Alice 50 Carol Middle 120
Ford Bob 150 Carol Young 80
Ford Carol 50 Dave Old 27
Ford Dave 250 Dave Middle 81

Dave Young 162

A S φ(A, S) S P φ(S, P )
Old High 133 High Executive 210
Old Medium 67 High Staff 45
Old Low 22 High Manager 8

Middle High 104 Medium Executive 13
Middle Medium 311 Medium Staff 387
Middle Low 104 Medium Manager 30
Young High 26 Low Executive 3
Young Medium 52 Low Staff 12
Young Low 181 Low Manager 292

Manufacturer (M) Dealership (D) Dealership (D) Age (A)

Bob

Carol

Dave

Alice

Young

Middle

Old

Bob

Carol

Dave

Alice

Honda

Ford

Toyota

Fig. 1. The DAGs of the binary RSFGs for the decision tables φ(M,D) and φ(D, A)
in Table 2, respectively. The coefficients are given in part of Table 3.

Each decision table defines a binary RSFG. The set of nodes in the flow graph
are {c1, c2, . . . , ck}∪{d1, d2, . . . , dl}, where c1, c2, . . . , ck and d1, d2, . . . , dl are the
values of C and D appearing in the decision table, respectively. For each row
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Table 3. The top two tables are the strength φ(ai, aj), certainty φ(aj |ai) and coverage
φ(ai|aj) coefficients for the edges (ai, aj) in Fig. 1. These two tables together with the
bottom two tables are the coefficients for the edges in Fig. 2.

M D φ1(M, D)φ1(D|M)φ1(M|D) D A φ2(D, A)φ2(A|D)φ2(D|A)
Toyota Alice 0.120 0.600 0.710 Alice Old 0.050 0.300 0.230
Toyota Bob 0.060 0.300 0.160 Alice Middle 0.100 0.600 0.190
Toyota Dave 0.020 0.100 0.070 Alice Young 0.020 0.100 0.080
Honda Bob 0.150 0.500 0.420 Bob Old 0.140 0.400 0.630
Honda Carol 0.150 0.500 0.750 Bob Middle 0.220 0.600 0.420
Ford Alice 0.050 0.100 0.290 Carol Middle 0.120 0.600 0.230
Ford Bob 0.150 0.300 0.420 Carol Young 0.080 0.400 0.310
Ford Carol 0.050 0.100 0.250 Dave Old 0.030 0.100 0.140
Ford Dave 0.250 0.500 0.930 Dave Middle 0.080 0.300 0.150

Dave Young 0.160 0.600 0.620

A S φ3(A, S) φ3(S|A) φ3(A|S) S P φ4(S, P ) φ4(P |S) φ4(S|P )
Old High 0.133 0.600 0.506 High Executive 0.210 0.800 0.929
Old Medium 0.067 0.300 0.156 High Staff 0.045 0.170 0.101
Old Low 0.022 0.100 0.072 High Manager 0.008 0.030 0.024

Middle High 0.104 0.200 0.395 Medium Executive 0.013 0.030 0.058
Middle Medium 0.311 0.600 0.723 Medium Staff 0.387 0.900 0.872
Middle Low 0.104 0.200 0.339 Medium Manager 0.030 0.070 0.091
Young High 0.026 0.100 0.099 Low Executive 0.003 0.010 0.013
Young Medium 0.052 0.200 0.121 Low Staff 0.012 0.040 0.027
Young Low 0.181 0.700 0.589 Low Manager 0.292 0.950 0.885

in the decision table, there is a directed edge (ci, dj) in the flow graph, where
ci is the value of C and dj is the value of D. Clearly, the defined graphical
structure is a directed acyclic graph (DAG). Each edge (ci, dj) is labelled with
three coefficients. The strength of (ci, dj) is φ(ci, dj) obtained from the decision
table. From φ(ci, dj), we can compute the certainty φ(dj |ci) and the coverage
φ(ci|dj).

Example 4. Consider the decision tables φ(M,D) and φ(D,A) in Table 2. The
DAGs of the binary RSFGs are illustrated in Fig. 1, respectively. The strength,
certainty and coverage of the edges of the flow graphs in Fig. 1 are shown in the
top two tables of Table 3.

In order to combine the collection of binary flow graphs into a general flow graph,
Pawlak makes the flow conservation assumption [7]. This means that, for an at-
tribute A appearing as a decision attribute in one decision table φ1(C1, A) and
also as a conditioning attribute in another decision table φ2(A,D2),
we have ∑

C1

φ1(C1, A) =
∑
D2

φ2(A,D2).

Example 5. The two binary RSFGs in Example 4 satisfy the flow conservation
assumption, since in Table 3, φ1(D) = φ2(D). For instance, φ1(D = “Alice”) =
0.170 = φ2(D = “Alice”).

A rough set flow graph (RSFG) [7,8] is a DAG, where each edge is associated
with the strength, certainty and coverage coefficients from a collection of decision
tables satisfying the flow conservation assumption.
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Salary (S)Dealership (D) Age (A) Position (P)Manufacturer (M)

Old

Middle

Young

High

Medium

Low Mana

Executive

ger

Staff

Bob

Carol

Dave

Alice

Honda

F rdo

Toyota

Fig. 2. The rough set flow graph (RSFG) for {M, D, A,S, P}, where the strength,
certainty and coverage coefficient are given in Table 3

Example 6. The RSFG for the decision tables in Table 2 is the DAG in Fig. 2
together with the strength, certainty and coverage coefficients in Table 3.

The task of RSFG inference is to compute a binary RSFG on {Ai, Aj}, namely,
a DAG on {Ai, Aj} and the coefficient table, denoted Ans(Ai, Aj), which is a
table with strength, certainty and coverage columns. We use the term query to
refer to any request involving strength, certainty or coverage.

Example 7. Consider a query on {M,P} posed to the RSFG in Example 6. The
answer to this query is the binary RSFG defined by Table 4 and Fig. 3.

Pawlak proposed Algorithm 1 to answer queries in a RSFG.

Algorithm 1. Algorithm 1. [7,8]
input : A RSFG and a query on {Ai, Aj}, i < j.
output: The coefficient table Ans(Ai, Aj) of the binary RSFG on {Ai, Aj}.
φ(Aj |Ai) =

∑
Ai+1,...,Aj−1

φ(Ai+1|Ai) · φ(Ai+2|Ai+1) · . . . · φ(Aj |Aj−1);

φ(Ai|Aj) =
∑

Ai+1,...,Aj−1
φ(Ai|Ai+1) · φ(Ai+1|Ai+2) · . . . · φ(Aj−1|Aj);

φ(Ai, Aj) = φ(Ai) · φ(Aj |Ai);
return( Ans(Ai, Aj) );

Algorithm 1 is used to compute the coefficient table of the binary RSFG on
{Ai, Aj}. The DAG of this binary RSFG has an edge (ai, aj) provided that
φ(ai, aj) > 0 in Ans(Ai, Aj). We illustrate Algorithm 1 with Example 8.
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Table 4. Answering a query on {M, P} posed to the RSFG in Fig. 2 consists of this
coefficient table Ans(M, P ) and the DAG in Fig. 3

M P φ(M,P ) φ(P |M) φ(M |P )
Toyota Executive 0.053132 0.265660 0.234799
Toyota Staff 0.095060 0.475300 0.214193
Toyota Manager 0.051808 0.259040 0.157038
Honda Executive 0.067380 0.224600 0.297764
Honda Staff 0.140820 0.469400 0.317302
Honda Manager 0.091800 0.306000 0.278259
Ford Executive 0.105775 0.211550 0.467437
Ford Staff 0.207925 0.415850 0.468505
Ford Manager 0.186300 0.372600 0.564703

M P

Ford

Honda

Toyota

Manager

Staff

Executive

Fig. 3. Answering a query on {M, P} posed to the RSFG in Fig. 2 consists of the
coefficient table Ans(M, P ) in Table 4 and this DAG on {M, P}

Example 8. Given a query on {M,P} posed to the RSFG in Fig. 2. Let us focus
on M = “Ford ” and P = “Staff ”, which we succinctly write as “Ford ” and
“Staff ”, respectively. The certainty φ(“Staff ”|“Ford ”) is computed as:

φ(“Staff ”|“Ford ”) =
∑

D,A,S

φ(D|“Ford ”) · φ(A|D) · φ(S|A) · φ(“Staff ”|S).

The coverage φ(“Ford ”|“Staff ”) is computed as:

φ(“Ford ”|“Staff ”) =
∑

D,A,S

φ(“Ford ”|D) · φ(D|A) · φ(A|S) · φ(S|“Staff ”).

The strength φ(“Ford ”, “Staff ”) is computed as:

φ(“Ford ”, “Staff ”) = φ(“Ford ”) · φ(“Staff ”|“Ford ”).

The DAG of this binary RSFG on {M,P} is depicted in Fig. 3.
In Example 8, computing coefficients φ(“Ford ”, “Staff ”), φ(“Staff ”|“Ford ”)

and φ(“Ford ”|“Staff ”) in Ans(M,P ) in Table 4 required 181 multiplications
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and 58 additions. No study, however, has formalized the time complexity of
Algorithm 1.

3 Complexity of Traditional Algorithm in RSFG

In this section, we establish the time complexity of Algorithm 1.

Theorem 2. Consider a RSFG on m variables U = {A1, A2, . . . , Am}. Let
|dom(Ai)| = n, for i = 1, . . . ,m. Let (ai, ai+1) be an edge in the RSFG, where
ai ∈ dom(Ai), ai+1 ∈ dom(Ai+1) and i = 1, . . . ,m − 1. To answer a query on
{Ai, Aj}, the time complexity of Algorithm 1 is O(lnl), where l = j − i + 1.

Proof. To compute the certainty φ(Aj |Ai), let

ψ1(Ai, Ai+1, . . . , Aj) = φ(Ai+1|Ai) · φ(Ai+2|Ai+1) · . . . · φ(Aj |Aj−1). (1)

The potential ψ1(Ai, Ai+1, . . . , Aj) has nl rows, since |dom(Ai)| = n for each
variable. By Equation (1), computing the certainty for one row requires l −
2 multiplications. Therefore, ψ1(Ai, Ai+1, . . . , Aj) is constructed by (l − 2)(nl)
multiplications. The second step is to determine

φ(Aj |Ai) =
∑

Ai+1,...,Aj−1

ψ1(Ai, Ai+1, . . . , Aj). (2)

There are exactly nl−2 rows in ψ1(Ai, Ai+1, . . . , Aj) with Ai = ai and Aj = aj .
Thus, computing φ(Aj = aj |Ai = ai) requires nl−2 − 1 additions. Since there
are n2 configurations in φ(Aj |Ai), to compute φ(Aj |Ai) requires (n2)(nl−2 − 1)
additions. That is, nl − n2 additions are required for Equation (2). As shown
above, the complexity to compute Equation (1) is O(lnl) and that to compute
Equation (2) is O(nl). Therefore, computing the certainty φ(Aj |Ai) has time
complexity O(lnl). It is easily seen that computing the coverage φ(Ai|Aj) re-
quires exactly the same amount of work as required for computing the certainty
φ(Aj |Ai). Thus, computing the coverage φ(Ai|Aj) has time complexity O(lnl).
The strength φ(Ai, Aj) is defined as the product φ(Ai) ·φ(Aj |Ai), which involves
n2 multiplications. Since the computation of Algorithm 1 is dominated by that
for certainty (coverage), the time complexity is O(lnl). �

The exponential time complexity of Algorithm 1 lies in the fact that it does
not exploit the factorization during inference. However, this does not mean that
Algorithm 1 is always inefficient in all practical situations.

4 An Efficient Algorithm for RSFG Inference

In this section, we will introduce an efficient algorithm to answer queries in a
RSFG and establish its complexity.

The main idea is to exploit the factorization to eliminate variables one by one,
instead of all at once as Algorithm 1 does. We focus on computing the coefficient
table Ans(Ai, Aj) with the DAG of the output RSFG understood.
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Algorithm 2. Algorithm 2
input : A RSFG and a query on {Ai, Aj}, i < j.
output: The coefficient table Ans(Ai, Aj) of the binary RSFG on {Ai, Aj}.
for k = (i + 1) to (j − 1) do

φ(Ak+1|Ai) =
∑

Ak
φ(Ak|Ai) · φ(Ak+1|Ak);

φ(Ai|Ak+1) =
∑

Ak
φ(Ai|Ak) · φ(Ak|Ak+1);

end
φ(Ai, Aj) = φ(Ai) · φ(Aj |Ai);
return( Ans(Ai, Aj) );

We illustrate Algorithm 2 with the following example.

Example 9. Recall Example 8. Again, we focus on the edge (“Ford ”, “Staff ”)
in the DAG in Fig. 3. According to Algorithm 2, variables {D,A, S} need be
eliminated. Consider variable D. The certainty φ(A|“Ford ”) is

φ(A|“Ford ”) =
∑
D

φ(D|“Ford ”) · φ(A|D),

while the coverage φ(“Ford ”|A) is

φ(“Ford ”|A) =
∑
D

φ(“Ford ”|D) · φ(D|A).

The consequence is that variable D has been eliminated, while variables M and
A have been linked via the certainty φ(A|“Ford ”) and coverage φ(“Ford ”|A).
Similarly, eliminating A yields φ(S|“Ford ”) and φ(“Ford ”|S). Finally, consider
eliminating variable S. The certainty φ(“Staff ”|“Ford ”) is

φ(“Staff ”|“Ford ”) =
∑
S

φ(S|“Ford ”) · φ(“Staff ”|S),

while the coverage φ(“Ford ”|“Staff ”) is

φ(“Ford ”|“Staff ”) =
∑
S

φ(“Ford ”|S) · φ(S|“Staff ”).

The strength φ(“Ford ”, “Staff ”) is determined as

φ(“Ford ”, “Staff ”) = φ(“Ford ”) · φ(“Staff ”|“Ford ”).

In Example 9, computing φ(“Ford ”, “Staff ”), φ(“Staff ”|“Ford ”) and
φ(“Ford ”|“Staff ”) in Ans(M,P ) in Table 4 only required 45 multiplications
and 30 additions. Recall that Algorithm 1 required 181 multiplications and 58
additions.

5 Theoretical Foundation

In this section, we show correctness of Algorithm 2 and prove Algorithm 2 is
efficient by analyzing its time complexity in the worst case.
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5.1 Correctness of the New RSFG Inference Algorithm

Here we prove that Algorithm 2 is correct. Let us first review two well known
results.

Lemma 1. [12] If φ is a potential on U , and X ⊆ Y ⊆ U , then marginalizing
φ onto Y and subsequently onto X is the same as marginalizing φ onto X.

Lemma 1 indicates that a marginal can be obtained by a series of marginaliza-
tions in any order. For example,∑

A,B

φ(A,B,C) =
∑
A

(
∑
B

φ(A,B,C)) =
∑
B

(
∑
A

φ(A,B,C)).

Lemma 2. [12] If φ is a potential on X and ψ is a potential on Y , then the
marginalization of φ · ψ onto X is the same as φ multiplied with the marginal-
ization of ψ onto X ∩ Y .

For instance, ∑
C

φ(A,B) · φ(B,C) = φ(A,B) ·
∑
C

φ(B,C).

Now let us turn to the correctness of Algorithm 2.

Theorem 3. Given a query on {Ai, Aj} posed to a RSFG on U = {A1, A2, . . . ,
Am}, where 1 ≤ i < j ≤ m. The answer produced by Algorithm 2 is correct.

Proof. We show the claim by proving that the answer table Ans(Ai, Aj) pro-
duced by Algorithm 2 contains the strength φ(Ai, Aj), the certainty φ(Aj |Ai)
and the coverage φ(Ai|Aj) computed by Algorithm 1. To answer the certainty
φ(Aj |Ai), Algorithm 1 is expressed by Equation (3),

φ(Aj |Ai) =
∑

Ai+1,Ai+2,...,Aj−1

φ(Ai+1|Ai) · φ(Ai+2|Ai+1) · . . . · φ(Aj |Aj−1). (3)

By Lemma 1 and Equation (3), φ(Aj |Ai) is equal to∑
Ai+1

∑
Ai+2

. . .
∑
Aj−2

∑
Aj−1

φ(Ai+1|Ai) · φ(Ai+2|Ai+1) · . . . · φ(Aj |Aj−1). (4)

By Lemma 2 and Equation (4), φ(Aj |Ai) is equal to∑
Ai+1

∑
Ai+2

. . .
∑
Aj−2

φ(Ai+1|Ai) · . . . ·φ(Aj−2|Aj−3) ·
∑
Aj−1

φ(Aj−1|Aj−2) ·φ(Aj |Aj−1).

(5)
By recursively using Lemma 2, Equation (5) can be rewritten as,∑

Ai+1

φ(Ai+1|Ai) ·
∑
Ai+2

φ(Ai+2|Ai+1) · . . . ·
∑
Aj−1

φ(Aj−1|Aj−2) · φ(Aj |Aj−1). (6)
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By Equations (3) - (6), the computation of the certainty φ(Aj |Ai) by Algorithm
1 is expressed as,

φ(Aj |Ai) =
∑
Ai+1

φ(Ai+1|Ai) · . . . ·
∑
Aj−1

φ(Aj−1|Aj−2) · φ(Aj |Aj−1). (7)

Equation (7) is the construction of the certainty φ(Aj |Ai) in Algorithm 2. It can
be similarly shown that the strength φ(Ai, Aj) and coverage φ(Ai|Aj) produced
by Algorithms 1 and 2 are the same. �

5.2 Complexity of the New RSFG Inference Algorithm

In this subsection, we establish the computational complexity of Algorithm 2.

Theorem 4. Consider a RSFG on m variables U = {A1, A2, . . . , Am}. Let
|dom(Ai)| = n, for i = 1, . . . ,m. Let (ai, ai+1) be an edge in the RSFG, where
ai ∈ dom(Ai), ai+1 ∈ dom(Ai+1) and i = 1, . . . ,m − 1. To answer a query on
{Ai, Aj}, the time complexity of Algorithm 2 is O(ln3), where l = j − i + 1.

Proof. The certainty φ(Aj |Ai) is computed by eliminating each variable Ak be-
tween Ai and Aj in the RSFG. For a variable Ak, Algorithm 2 first computes

ψ2(Ak−1, Ak, Ak+1) = φ(Ak|Ak−1) · φ(Ak+1|Ak). (8)

The potential ψ2(Ak−1, Ak, Ak+1) has n3 rows, since |dom(Ai)| = n for each vari-
able. Computing the certainty for one row requires 1 multiplication. Therefore,
potential ψ2(Ak−1, Ak, Ak+1) is constructed by n3 multiplications. The second
step is to determine

φ(Ak+1|Ak−1) =
∑
Ak

ψ2(Ak−1, Ak, Ak+1). (9)

There are n rows in ψ2(Ak−1, Ak, Ak+1) with Ak−1 = ak−1 and Ak+1 = ak+1.
Thus, computing φ(Ak+1 = ak+1|Ak−1 = ak−1) requires n − 1 additions. Since
there are n2 configurations in φ(Ak+1|Ak−1), (n2)(n− 1) additions are required
to compute φ(Ak+1|Ak−1) in Equation (9). Therefore, the time complexity to
compute the certainty φ(Ak+1|Ak−1) is O(n3). Since there are l−2 variables be-
tween Ai and Aj , the time complexity to compute the desired certainty φ(Aj |Ai)
has time complexity O(ln3). Similar to the proof of Theorem 2, it follows that
the time complexity of Algorithm 2 is O(ln3). �

Theorem 4 shows that Algorithm 2 has polynomial time complexity in the worst
case. Therefore, Algorithm 2 is an efficient algorithm for RSFG inference in all
practical situations.
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6 Related Work

In this section, we show Algorithm 2 never performs more work than Algorithm
1. To show this claim let us first characterize the computation performed by
Algorithm 1 and Algorithm 2 when answering a query.

We need only focus on how the certainty φ(Aj |Ai) is computed from a RSFG
on U = {A1, A2, . . . , Am} with certainties φ(A2|A1), φ(A3|A2), . . . , φ(Am|
Am−1). For simplicity, we eliminate variables in the following order: Aj−1, Aj−2,
. . . , Ai+1.

Algorithm 1 computes the following product ψ1(Ai, Ai+1, . . . , Aj):

ψ1(Ai, Ai+1, . . . , Aj)
= φ(Ai+1|Ai) · . . . · φ(Aj−2|Aj−3) · φ(Aj−1|Aj−2) · φ(Aj |Aj−1)

via a series of binary multiplications, namely,

ψ1(Ai, Ai+1, . . . , Aj)
= φ(Ai+1|Ai) · [. . . · [φ(Aj−2|Aj−3) · [φ(Aj−1|Aj−2) · φ(Aj |Aj−1)]] . . .].(10)

According to Equation (10), the first multiplication is as follows,

ψ1(Aj−2, Aj−1, Aj) = φ(Aj−1|Aj−2) · φ(Aj |Aj−1). (11)

The intermediate multiplications are performed as follows,

ψ1(Ak−1, Ak, . . . , Aj) = φ(Ak|Ak−1) · ψ1(Ak, Ak+1, . . . , Aj), (12)

where k = (j − 2), . . . , (i + 1).
After computing ψ1(Ai, Ai+1, . . . , Aj), Algorithm 1 eliminates variables Ai+1,

Ai+2, . . . , Aj−1 via a series of marginalizations, namely,∑
Ai+1

∑
Ai+2

. . .
∑
Aj−1

ψ1(Ai, Ai+1, . . . , Aj).

An intermediate marginalization takes the form,

ψ1(Ai, . . . , Al−1, Aj) =
∑
Al

ψ1(Ai, . . . , Al−1, Al, Aj), (13)

where l = (j − 1), . . . , (i + 2). The final marginalization yields

φ(Aj |Ai) =
∑
Ai+1

ψ1(Ai, Ai+1, Aj). (14)

Now consider how Algorithm 2 computes the certainty φ(Aj |Ai). As previ-
ously mentioned, Algorithm 2 eliminates variables Aj−1, . . . , Ai+1 one by one.
Algorithm 2 computes,

φ(Aj |Ai)

=
∑
Ai+1

φ(Ai+1|Ai) · . . . ·
∑
Aj−2

φ(Aj−2|Aj−3) ·
∑
Aj−1

φ(Aj−1|Aj−2) · φ(Aj |Aj−1).

(15)
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According to Equation (15), the first multiplication in Algorithm 2 is,

ψ2(Aj−2, Aj−1, Aj) = φ(Aj−1|Aj−2) · φ(Aj |Aj−1). (16)

Algorithm 2 then performs intermediate additions and multiplications, itera-
tively,

φ(Aj |Aj−2) =
∑
Aj−1

ψ2(Aj−2, Aj−1, Aj),

ψ2(Aj−3, Aj−2, Aj) = φ(Aj−2|Aj−3) · φ(Aj |Aj−2),

φ(Aj |Aj−3) =
∑
Aj−2

ψ2(Aj−3, Aj−2, Aj),

...
ψ2(Ai, Ai+1, Aj) = φ(Ai+1|Ai) · φ(Aj |Ai+1).

Therefore, an intermediate marginalization takes the form,

φ(Aj |Al−1) =
∑
Al

ψ2(Al−1, Al, Aj), (17)

where l = (j − 1), . . . , (i + 2). An intermediate multiplication takes the form,

ψ2(Ak−1, Ak, Aj) = φ(Ak|Ak−1) · φ(Aj |Ak), (18)

where k = (j − 2), . . . , (i + 1). After these intermediate additions and multipli-
cations, the final marginalization yields the desired certainty φ(Aj |Ai):

φ(Aj |Ai) =
∑
Ai+1

ψ2(Ai, Ai+1, Aj). (19)

Lemma 3 shows that the intermediate potentials computed in the multiplica-
tion process of Algorithm 2 are marginalizations of the larger potentials com-
puted in Algorithm 1. Lemma 4 shows that the intermediate potentials com-
puted in the marginalization process of Algorithm 2 have no more rows than the
marginalizations of the larger potentials computed in Algorithm 1.

Lemma 3. To answer a query on {Ai, Aj} posed to a RSFG on U = {A1, A2,
. . . , Am}, φ(Aj |Ak) in Equation (18) of Algorithm 2 is a marginal of ψ1(Ak,
Ak+1, . . . , Aj) in Equation (12) of Algorithm 1.

Proof. By definition, the marginal of ψ1(Ak, Ak+1, . . . , Aj) onto {Ak, Aj} is:∑
Ak+1,...,Aj−1

ψ1(Ak, Ak+1, . . . , Aj). (20)

By Algorithm 1, Equation (20) is equal to,∑
Ak+1,...,Aj−1

φ(Ak+1|Ak) · . . . · φ(Aj−1|Aj−2) · φ(Aj |Aj−1). (21)
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By Lemmas 1 and 2, Equation (21) can be rewritten as:∑
Ak+1

φ(Ak+1|Ak) · . . . ·
∑
Aj−1

φ(Aj−1|Aj−2) · φ(Aj |Aj−1). (22)

By Equation (7),

φ(Aj |Ak) =
∑
Ak+1

φ(Ak+1|Ak) · . . . ·
∑
Aj−1

φ(Aj−1|Aj−2) · φ(Aj |Aj−1). (23)

By Equations (20) - (23),

φ(Aj |Ak) =
∑

Ak+1,...,Aj−1

ψ1(Ak, Ak+1, . . . , Aj).

Therefore, φ(Aj |Ak) is the marginal of ψ1(Ak, Ak+1, . . . , Aj) onto variables {Ak,
Aj}. �

Lemma 4. To answer a query on {Ai, Aj} posed to a RSFG on U = {A1, A2,
. . . , Am}, ψ2(Al−1, Al, Aj) in Equation (17) of Algorithm 2 has no more rows
than the marginal of ψ1(Ai, . . . , Al−1, Al, Aj) in Equation (13) of Algorithm 1
onto variables {Al−1, Al, Aj}.

Proof. By definition, the marginal of ψ1(Ai,. . . , Al−1, Al, Aj) onto variables
{Al−1, Al, Aj} is: ∑

Ai,...,Al−2

ψ1(Ai, . . . , Al−1, Al, Aj). (24)

By Algorithm 1, Equation (24) is equal to,∑
Ai,...,Al−2

φ(Ai+1|Ai) · . . . · φ(Al−2|Al−3) · φ(Al−1|Al−2) · φ(Al|Al−1) · φ(Aj |Al).

(25)
By Lemma 2, Equation (25) is equal to,

φ(Al|Al−1) · φ(Aj |Al) ·
∑

Ai,...,Al−2

φ(Ai+1|Ai) · . . . · φ(Al−2|Al−3) · φ(Al−1|Al−2).

(26)
By Lemmas 1 and 2, Equation (26) can be rewritten as:

φ(Al|Al−1)·φ(Aj |Al)·
∑
Ai

(
∑
Ai+1

φ(Ai+1|Ai)·. . .·
∑
Al−2

φ(Al−2|Al−3)·φ(Al−1|Al−2)).

(27)
By Equation (7),

∑
Ai+1

φ(Ai+1|Ai) · . . . ·
∑

Al−2
φ(Al−2|Al−3) · φ(Al−1|Al−2)

yields φ(Al−1|Ai). Thus, Equation (27) can be rewritten as:

φ(Al|Al−1) · φ(Aj |Al) ·
∑
Ai

φ(Al−1|Ai). (28)
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By Equation (18),

ψ2(Al−1, Al, Aj) = φ(Al|Al−1) · φ(Aj |Al). (29)

Substituting Equation (29) into Equation (28), we obtain:

ψ2(Al−1, Al, Aj) ·
∑
Ai

φ(Al−1|Ai).) (30)

By Equations (24) - (30),∑
Ai,...,Al−2

ψ1(Ai, . . . , Al−1, Al, Aj) = ψ2(Al−1, Al, Aj) ·
∑
Ai

φ(Al−1|Ai).

Therefore, ψ2(Al−1, Al, Aj) has no more rows than the marginal of ψ1(Ai, . . . ,
Al−1, Al, Aj) onto variables {Al−1, Al, Aj}. �

We use the above analysis to show the following two results. Lemma 5 says
that Algorithm 2 never performs more multiplications than Algorithm 1 when
answering a query. Lemma 6 says the same except for additions.

Lemma 5. Given a query on {Ai, Aj} posed to a RSFG on U = {A1, A2, . . . ,
Am}, Algorithm 2 never performs more multiplications than Algorithm 1.

Proof. It can be seen from Equations (11) and (16) that Algorithms 1 and 2 use
the same number of multiplications to compute the first potential ψ1(Aj−2, Aj−1,
Aj) and ψ2(Aj−2, Aj−1, Aj). Therefore, Algorithm 1 and Algorithm 2 perform
the same number of multiplications provided that precisely two potentials need
be multiplied to answer a query. On the other hand, Algorithm 2 never per-
forms more multiplications than Algorithm 1 provided that there are at least
three potentials to be multiplied. By Lemma 3, φ(Aj |Ak) is the marginal of
ψ1(Ak, Ak+1, . . . , Aj) onto {Ak, Aj}. Therefore, all multiplications in Equa-
tion (18) performed by Algorithm 2 for computing the certainty φ(Aj |Ai) must
necessarily be performed in Equation (12) by Algorithm 1. It can be similarly
shown that Algorithm 2 never performs more multiplications than Algorithm 1
when computing the strength φ(Ai, Aj) or coverage φ(Ai|Aj). Therefore, Algo-
rithm 2 never performs more multiplications than Algorithm 1 when answering a
query. �

Lemma 6. Given a query on {Ai, Aj} posed to a RSFG on U = {A1, A2, . . . ,
Am}, Algorithm 2 never performs more additions than Algorithm 1.

Proof. It can be seen from Equations (14) and (19) that Algorithms 1 and 2
use the same number of additions to eliminate the last variable Ai+1 from the
potential ψ1(Ai, Ai+1, Aj) and ψ2(Ai, Ai+1, Aj). Therefore, Algorithm 1 and Al-
gorithm 2 perform the same number of additions provided that precisely one
variable need be eliminated to answer a query. On the other hand, Algorithm
2 never performs more additions than Algorithm 1, provided that there are at
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least two variables to be eliminated. By Lemma 4, ψ2(Al−1, Al, Aj) has no more
rows than the marginal of ψ1(Ai, . . . , Al−1, Al, Aj) onto {Al−1, Al, Aj}. There-
fore, summing out Al from ψ2(Al−1, Al, Aj) combines no more rows than needed
from ψ1(Ai, . . . , Al−1, Al, Aj). Since combining n rows requires n− 1 additions,
Algorithm 2 never performs more additions than Algorithm 1 for computing the
certainty φ(Aj |Ai). That Algorithm 2 never performs more additions than Al-
gorithm 1 when computing the strength φ(Ai, Aj) or coverage φ(Ai|Aj) follows
in a similar fashion. Therefore, Algorithm 2 never performs more additions than
Algorithm 1 when answering a query. �

Lemmas 5 and 6 indicate that Algorithm 2 never performs more work than
Algorithm 1.

7 Other Remarks on Rough Set Flow Graphs

One salient feature of rough sets is that they serve as a tool for uncertainty
management without making assumptions regarding the problem domain. On
the contrary, we establish in this section that RSFGs, in fact, make implicit
independency assumptions regarding the problem domain.

Two tables φ1(Ai, Aj) and φ2(Aj , Ak) are pairwise consistent [3,13], if

φ1(Aj) = φ2(Aj). (31)

Example 10. In Table 3, φ1(M,D) and φ2(D,A) are pairwise consistent. For
instance, φ1(D = “Alice”) = 0.170 = φ2(D = “Alice”).

Consider m − 1 potentials φ1(A1, A2), φ2(A2, A3), . . . , φm−1(Am−1, Am), such
that each consecutive pair is pairwise consistent, namely,

φi(Ai+1) = φi+1(Ai+1), (32)

for i = 1, 2, . . . ,m − 2. Observe that the schemas of these decision tables form
an acyclic hypergraph [1]. Dawid and Lauritzen [3] have shown that if a given
set of potentials satisfies Equation (32) and are defined over an acyclic hyper-
graph, then the potentials are marginals of a unique potential φ(A1, A2, . . . , Am),
defined as:

φ(A1, A2, . . . , Am) =
φ1(A1, A2) · φ2(A2, A3) · . . . · φm−1(Am−1, Am)

φ1(A2) · . . . · φm−2(Am−1)
. (33)

In [7,8], the flow conservation assumption is made. This means that a given
set of m − 1 decision tables φ1(A1, A2), φ2(A2, A3), . . . , φm−1(Am−1, Am) satis-
fies Equation (32). By [3], these potentials are marginals of a unique potential
φ(A1, A2, . . . , Am) defined by Equation (33), which we will call the collective
potential. The collective potential φ(A1, A2, . . . , Am) represents the problem do-
main from a rough set perspective.

In order to test whether independencies are assumed to hold, it is necessary
to normalize φ(A1, A2, . . . , Am). (Note that the normalization process has been
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used in [7,8].) Normalizing φ(A1, A2, . . . , Am) yields a jpd p(A1, A2, . . . , Am)
by multiplying 1/N , where N denotes the number of all cases. It follows from
Equation (33) that

p(A1, A2, . . . , Am) =
1
N

· φ(A1, A2, . . . , Am)

=
1
N

· φ1(A1, A2) · φ2(A2, A3) · . . . · φm−1(Am−1, Am)
φ1(A2) · . . . · φm−2(Am−1)

. (34)

We now show that RSFGs make implicit independency assumptions regarding
the problem domain.

Theorem 5. Consider a RSFG defined by m − 1 decision tables φ1(A1, A2),
φ2(A2, A3), . . . , φm−1(Am−1, Am). Then m− 2 probabilistic independencies
I(A1, A2, A3 . . . Am), I(A1A2, A3, A4 . . . Am), . . . , I(A1 . . . Am−2, Am−1, Am) are
satisfied by the jpd p(A1, A2, . . . , Am), where p(A1, A2, . . . , Am) is the normaliza-
tion of collective potential φ(A1, A2, . . . , Am) representing the problem domain.

Proof. Consider I(A1, A2, A3 . . . Am). By Equation (34), let

φ′(A1, A2) = φ1(A1, A2) (35)

and

φ′′(A2, A3, . . . , Am) =
1
N

· φ2(A2, A3) · . . . · φm−1(Am−1, Am)
φ1(A2) · . . . · φm−2(Am−1)

. (36)

By substituting Equations (35) and (36) into Equation (34),

p(A1, A2, . . . , Am) = φ′(A1, A2) · φ′′(A2, A3, . . . , Am). (37)

By Theorem 1, Equation (37) indicates that I(A1, A2, A3 . . . Am) holds. It can
be similarly shown that I(A1A2, A3, A4 . . . Am), . . . , I(A1 . . . Am−2, Am−1, Am)
are also satisfied by the jpd p(A1, A2, . . . , Am). �

Example 11. Decision tables φ(M,D), φ(D,A), φ(A,S) and φ(S, P ) in Table 2
satisfy Equation (32) and are defined over an acyclic hypergraph {MD,DA,AS,
SP}. This means they are marginals of a unique collective potential,

φ(M,D,A, S, P ) =
φ(M,D) · φ(D,A) · φ(A,S) · φ(S, P )

φ(D) · φ(A) · φ(S)
. (38)

The normalization of φ(M,D,A, S, P ) is a jpd p(M,D,A, S, P ),

p(M,D,A, S, P ) =
1

1000
· φ(M,D) · φ(D,A) · φ(A,S) · φ(S, P )

φ(D) · φ(A) · φ(S)
, (39)

where the number of all cases N = 1000. To show I(M,D,ASP ) holds, let

φ′(M,D) = φ(M,D) (40)
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and

φ′′(D,A, S, P ) =
1

1000
· φ(D,A) · φ(A,S) · φ(S, P )

φ(D) · φ(A) · φ(S)
. (41)

Substituting Equations (40) and (41) into Equation (39),

p(M,D,A, S, P ) = φ′(M,D) · φ′′(D,A, S, P ). (42)

By Theorem 1, the independence I(M,D,ASP ) holds in p(M,D,A, S, P ). It can
be similarly shown that I(MD,A, SP ) and I(MDA,S, P ) are also satisfied by
p(M,D,A, S, P ).

The important point is that the flow conservation assumption [7] used in the
construction of RSFGs implicitly implies probabilistic conditional independen-
cies holding in the problem domain.

8 Conclusion

Pawlak [7,8] recently introduced the notion of rough set flow graph (RSFGs)
as a graphical framework for reasoning from data. In this paper, we established
that the RSFG inference algorithm suggested in [7,8] has exponential time com-
plexity. The root cause of the computational explosion is a failure to exploit the
factorization defined by a RSFG during inference. We proposed a new RSFG al-
gorithm exploiting the factorization. We showed its correctness and established
its time complexity is polynomial with respect to number of nodes in a RSFG.
In addition, we showed that it never performs more work than the traditional
algorithm [7,8]. These are important results, since they indicate that RSFGs
are an efficient framework for uncertainty management. Finally, our study has
revealed that RSFGs, unlike previous rough set research, make implicit indepen-
dency assumptions regarding the problem domain. Future work will report on
the complexity of the inference in generalized RSFGs [4]. As the order in which
variables are eliminated affects the amount of computation performed [6], we
will also investigate this issue in RSFGs.
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Appendix I

Table 5. A jpd p(U) is shown in Tables 5 and 6, where U = {M, D, A, S, P}

M D A S P p(U) M D A S P p(U)
ToyotaAlice Old High Executive0.017280 Toyota Dave Old Medium Staff 0.000540
ToyotaAlice Old High Staff 0.003672 Toyota Dave Old Medium Manager 0.000042
ToyotaAlice Old High Manager 0.000648 Toyota Dave Old Low Executive0.000002
ToyotaAlice Old MediumExecutive0.000324 Toyota Dave Old Low Staff 0.000008
ToyotaAlice Old Medium Staff 0.009720 Toyota Dave Old Low Manager 0.000190
ToyotaAlice Old Medium Manager 0.000756 Toyota Dave Middle High Executive0.000960
ToyotaAlice Old Low Executive0.000036 Toyota Dave Middle High Staff 0.000204
ToyotaAlice Old Low Staff 0.000144 Toyota Dave Middle High Manager 0.000036
ToyotaAlice Old Low Manager 0.003420 Toyota Dave MiddleMediumExecutive0.000108
ToyotaAliceMiddle High Executive0.011520 Toyota Dave MiddleMedium Staff 0.003240
ToyotaAliceMiddle High Staff 0.002448 Toyota Dave MiddleMedium Manager 0.000252
ToyotaAliceMiddle High Manager 0.000432 Toyota Dave Middle Low Executive0.000012
ToyotaAliceMiddleMediumExecutive0.001296 Toyota Dave Middle Low Staff 0.000048
ToyotaAliceMiddleMedium Staff 0.003888 Toyota Dave Middle Low Manager 0.001140
ToyotaAliceMiddleMedium Manager 0.003024 Toyota Dave Young High Executive0.000960
ToyotaAliceMiddle Low Executive0.000144 Toyota Dave Young High Staff 0.000204
ToyotaAliceMiddle Low Staff 0.000576 Toyota Dave Young High Manager 0.000036
ToyotaAliceMiddle Low Manager 0.013680 Toyota Dave Young MediumExecutive0.000072
ToyotaAlice Young High Executive0.000960 Toyota Dave Young Medium Staff 0.002160
ToyotaAlice Young High Staff 0.000204 Toyota Dave Young Medium Manager 0.000168
ToyotaAlice Young High Manager 0.000036 Toyota Dave Young Low Executive0.000084
ToyotaAlice Young MediumExecutive0.000072 Toyota Dave Young Low Staff 0.000336
ToyotaAlice Young Medium Staff 0.002160 Toyota Dave Young Low Manager 0.007980
ToyotaAlice Young Medium Manager 0.000168 Honda Bob Old High Executive0.028800
ToyotaAlice Young Low Executive0.000084 Honda Bob Old High Staff 0.006120
ToyotaAlice Young Low Staff 0.000336 Honda Bob Old High Manager 0.001080
ToyotaAlice Young Low Manager 0.007980 Honda Bob Old MediumExecutive0.000540
Toyota Bob Old High Executive0.011520 Honda Bob Old Medium Staff 0.016200
Toyota Bob Old High Staff 0.002448 Honda Bob Old Medium Manager 0.001260
Toyota Bob Old High Manager 0.000432 Honda Bob Old Low Executive0.000060
Toyota Bob Old MediumExecutive0.000216 Honda Bob Old Low Staff 0.000240
Toyota Bob Old Medium Staff 0.006480 Honda Bob Old Low Manager 0.005700
Toyota Bob Old Medium Manager 0.000504 Honda Bob Middle High Executive0.014400
Toyota Bob Old Low Executive0.000024 Honda Bob Middle High Staff 0.003060
Toyota Bob Old Low Staff 0.000096 Honda Bob Middle High Manager 0.000540
Toyota Bob Old Low Manager 0.002280 Honda Bob MiddleMediumExecutive0.001620
Toyota Bob Middle High Executive0.005760 Honda Bob MiddleMedium Staff 0.048600
Toyota Bob Middle High Staff 0.001224 Honda Bob MiddleMedium Manager 0.003780
Toyota Bob Middle High Manager 0.000216 Honda Bob Middle Low Executive0.000180
Toyota Bob MiddleMediumExecutive0.000648 Honda Bob Middle Low Staff 0.000720
Toyota Bob MiddleMedium Staff 0.019440 Honda Bob Middle Low Manager 0.017100
Toyota Bob MiddleMedium Manager 0.001512 Honda CarolMiddle High Executive0.014400
Toyota Bob Middle Low Executive0.000072 Honda CarolMiddle High Staff 0.003060
Toyota Bob Middle Low Staff 0.000288 Honda CarolMiddle High Manager 0.000540
Toyota Bob Middle Low Manager 0.006840 Honda CarolMiddleMediumExecutive0.001620
ToyotaDave Old High Executive0.000960 Honda CarolMiddleMedium Staff 0.048600
ToyotaDave Old High Staff 0.000204 Honda CarolMiddleMedium Manager 0.003780
ToyotaDave Old High Manager 0.000036 Honda CarolMiddle Low Executive0.000180
ToyotaDave Old MediumExecutive0.000018 Honda CarolMiddle Low Staff 0.000720
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Table 6. A jpd p(U) is shown in Tables 5 and 6, where U = {M, D, A, S, P}

M D A S P p(U) M D A S P p(U)
HondaCarolMiddle Low Manager 0.017100 Ford Bob MiddleMedium Staff 0.048600
HondaCarol Young High Executive0.004800 Ford Bob MiddleMedium Manager 0.003780
HondaCarol Young High Staff 0.001020 Ford Bob Middle Low Executive0.000180
HondaCarol Young High Manager 0.000180 Ford Bob Middle Low Staff 0.000720
HondaCarol Young MediumExecutive0.000360 Ford Bob Middle Low Manager 0.017100
HondaCarol Young Medium Staff 0.010800 FordCarolMiddle High Executive0.004800
HondaCarol Young Medium Manager 0.000840 FordCarolMiddle High Staff 0.001020
HondaCarol Young Low Executive0.000420 FordCarolMiddle High Manager 0.000180
HondaCarol Young Low Staff 0.001680 FordCarolMiddleMediumExecutive0.000540
HondaCarol Young Low Manager 0.039900 FordCarolMiddleMedium Staff 0.016200
Ford Alice Old High Executive0.007200 FordCarolMiddleMedium Manager 0.001260
Ford Alice Old High Staff 0.001530 FordCarolMiddle Low Executive0.000060
Ford Alice Old High Manager 0.000270 FordCarolMiddle Low Staff 0.000240
Ford Alice Old MediumExecutive0.000135 FordCarolMiddle Low Manager 0.005700
Ford Alice Old Medium Staff 0.004050 FordCarol Young High Executive0.001600
Ford Alice Old Medium Manager 0.000315 FordCarol Young High Staff 0.000340
Ford Alice Old Low Executive0.000015 FordCarol Young High Manager 0.000060
Ford Alice Old Low Staff 0.000060 FordCarol Young MediumExecutive0.000120
Ford Alice Old Low Manager 0.001425 FordCarol Young Medium Staff 0.003600
Ford Alice Middle High Executive0.004800 FordCarol Young Medium Manager 0.000280
Ford Alice Middle High Staff 0.001020 FordCarol Young Low Executive0.000140
Ford Alice Middle High Manager 0.000180 FordCarol Young Low Staff 0.000560
Ford Alice MiddleMediumExecutive0.000540 FordCarol Young Low Manager 0.013300
Ford Alice MiddleMedium Staff 0.016200 Ford Dave Old High Executive0.012000
Ford Alice MiddleMedium Manager 0.001260 Ford Dave Old High Staff 0.002550
Ford Alice Middle Low Executive0.000060 Ford Dave Old High Manager 0.000450
Ford Alice Middle Low Staff 0.000240 Ford Dave Old MediumExecutive0.000225
Ford Alice Middle Low Manager 0.005700 Ford Dave Old Medium Staff 0.006750
Ford Alice Young High Executive0.000400 Ford Dave Old Medium Manager 0.000525
Ford Alice Young High Staff 0.000085 Ford Dave Old Low Executive0.000025
Ford Alice Young High Manager 0.000015 Ford Dave Old Low Staff 0.000100
Ford Alice Young MediumExecutive0.000030 Ford Dave Old Low Manager 0.002375
Ford Alice Young Medium Staff 0.000900 Ford Dave Middle High Executive0.012000
Ford Alice Young Medium Manager 0.000070 Ford Dave Middle High Staff 0.002550
Ford Alice Young Low Executive0.000035 Ford Dave Middle High Manager 0.000450
Ford Alice Young Low Staff 0.000140 Ford Dave MiddleMediumExecutive0.001350
Ford Alice Young Low Manager 0.003325 Ford Dave MiddleMedium Staff 0.040500
Ford Bob Old High Executive0.028800 Ford Dave MiddleMedium Manager 0.003150
Ford Bob Old High Staff 0.006120 Ford Dave Middle Low Executive0.000150
Ford Bob Old High Manager 0.001080 Ford Dave Middle Low Staff 0.000600
Ford Bob Old MediumExecutive0.000540 Ford Dave Middle Low Manager 0.014250
Ford Bob Old Medium Staff 0.016200 Ford Dave Young High Executive0.012000
Ford Bob Old Medium Manager 0.001260 Ford Dave Young High Staff 0.002550
Ford Bob Old Low Executive0.000060 Ford Dave Young High Manager 0.000450
Ford Bob Old Low Staff 0.000240 Ford Dave Young MediumExecutive0.000900
Ford Bob Old Low Manager 0.005700 Ford Dave Young Medium Staff 0.027000
Ford Bob Middle High Executive0.014400 Ford Dave Young Medium Manager 0.002100
Ford Bob Middle High Staff 0.003060 Ford Dave Young Low Executive0.001050
Ford Bob Middle High Manager 0.000540 Ford Dave Young Low Staff 0.004200
Ford Bob MiddleMediumExecutive0.001620 Ford Dave Young Low Manager 0.099750
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Abstract. Two algorithms for movie sound tracks restoration are dis-
cussed in the paper. The first algorithm is the unpredictability mea-
sure computation applied to the psychoacoustic model-based broadband
noise attenuation. A learning decision algorithm, based on a neural net-
work, is employed for determining useful audio signal components act-
ing as maskers of the noisy spectral parts. An application of the rough
set decision system to this task is also considered. An iterative method
for calculating the sound masking pattern is presented. The second of
presented algorithms is the routine for precise evaluation of parasite
frequency modulations (wow) utilizing sinusoidal components extracted
from the sound spectrum. The results obtained employing proposed in-
telligent signal processing algorithms, as well as the relationship between
both routines, will be presented and discussed in the paper.

Keywords: Audio restoration, noise reduction, wow evaluation.

1 Introduction

Noise is a common disturbance in archival recordings and a suitable solution
is presented in this paper. Acoustic noise reduction is a subject of extensive
research, carried out in the last decades. Several approaches during this time were
studied, such as adaptive filtering [1,2,3], autocorrelation [4,5] and statistical
methods [6,7,8], parametric models for spectrum estimation [9,10], and some
techniques based on intelligent algorithms (including rough set - based audio
signal enhancement approach) have been investigated in recent years [11,12]. In
addition, multi-channel representation of signals was considered, with regard to
microphone matrices [13,14,15]. The main stream approaches, which are based on
assumption that undistorted signal is not correlated with parasite noise and the
noise is stationary, of additive type are: Kalman [10][16][17] and Wiener filtration
[18,19], stochastic modeling of the signals [20,21] and spectral subtraction [22,23].
These methods however, do not utilize concepts of perceptual filtration, thus
they do not take into account some subjective properties of the human auditory
system [24].
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The engineered algorithm, described in this paper, utilizes phenomena related
to sound perception and is based on perceptual filtering. In addition, the restora-
tion process is controlled by an intelligent algorithm. The intelligent reasoning,
based on a neural network, is the core decision unit responsible for classifying
noisy patterns. The approach has been presented in authors earlier paper [25].
Application of perceptual filtering has been exploited by several researchers [26],
for various audio processing applications, such as audio coding standards [27,28].
As it was demonstrated in our earlier work [29], utilizing concepts of perceptual
filtering for noise removal may be very effective. However such an approach
requires employing a precise sound perception modeling [30], rather than imple-
mentation of the simplified one exploited in the MPEG coding standard [27].

Another problem related to archive audio recorded in movie sound tracks is
parasitic frequency modulation (FM) originated from motor speed fluctuations,
tape damages and inappropriate editing techniques. This kind of distortion is
usually defined as wow or flutter or modulation noise, depending on the fre-
quency range of the parasitic modulation frequency. Wow defect is typically
defined as frequency modulation in the range up to 6Hz, flutter is the frequency
modulation between 6-15Hz and modulation noise (or scrape flutter)describes
96Hz frequency modulation. In this paper we will focus on the wow defect.

As particularly wow leads to undesirable changes of all of the sound fre-
quency components, sinusoidal sound analysis originally proposed by McAulay
and Quatieri [31] was found to be very useful in the defects evaluation. In such
an approach tracks depicting tonal components changes (MQ tracks) are deter-
mined to obtain a precise wow characteristic [32][33]. The statistical methods
for post-processing of MQ tracks for monophonic audio signals were introduced
by Godsill and Rayner [34][35][36]. Their approach is build on three process-
ing steps. Firstly, a DFT magnitude-based peak tracking algorithm is used for
tonal component estimation. It provides a set of harmonic components trajecto-
ries. This set constitutes data for the FM estimation which leads to the second
processing step. Each trajectory is denoted by its center frequency being un-
known and considered as varying one. The variations are attributed both to the
investigated FM (tracking misleading) and unknown noisy-like components (e.g.
genuine musical pitch deviations). The noise-like components are assumed to be
independent, identically distributed Gaussian processes. Thereby, the likelihood
function of the unknown center frequencies and the parasite FM are obtained.
Further the maximum likelihood solution (ML) is used for wow characteristic
evaluation. Details of this method can be found in the papers [34][35][36]. Ad-
ditionally a priori information on wow distortion can be introduced through
Bayesian probability framework. The maximum a posteriori estimator (MAP)
was proposed by Godsill [33]. In the last processing step, the estimated wow
characteristic enables signal restoration. The sinc based non-uniform resampling
was used for this purpose. For details on the non-uniform resampling in wow
restoration the literature can be inquired [38].

A method for statistical processing of MQ trajectories for polyphonic audio
signals was introduced by Walmsley, Godsill and Rayner. The method is an
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addition to the Bayesian approach to the monophonic signals. The parasite FM
are modeled using latent variables estimated jointly across numerous neighboring
frames. At the end the Markov chain the Monte Carlo methods are used for
parameters estimation [34].

The MQ-based approach to wow characteristic evaluation was also studied
by authors of this paper. However, because of the observation that wow can be
a non-periodic distortion [37], in authors’ approach the emphasis was put not
only on the statistically-based post-processing of the MQ tracks, but also on the
precise estimation of tonal components variations. Regardless of the MQ-based
routines also some new algorithms for wow evaluation, e.g., the novel time-based
autocorrelation analysis, were proposed by authors of this paper. More details
are described in other papers [38,39,40,41,42,43].

Algorithms for wow evaluation were presented also by Nichols [44]. The meth-
ods strengthened by the non-uniform resampler are available in the application
called JPITCH. Two of the included automatic wow evaluation methods are de-
voted to short-term pitch defects (i.e. with time duration less than 1 second).
The first method for short-term defects processing is similar to the concept of
the MQ tracks analysis utilized by Godsill and Rayner. Nichols however, in-
troduces an iterative procedure for accurate peak frequencies estimation. The
second method for short-term FM processing is based on a novel concept of
graphical processing of a spectrogram. The spectrogram is searched for peaks
which, after excluding some false elements, are joined to form trajectories. Then
the set of tracks is post-processed to obtain the wow characteristic. The third
method proposed by Nichols concentrates on the long-term distortions (much
longer than 1 second, i.e., drift). The algorithm is frame-based. In each one-
second segment, the detune estimate is calculated as weighted product of the
highest magnitude peaks. The results are filtered to remove false oscillations.
The results, obtained using one the 3 algorithms, allows for signal restoration
performed by means of incommensurate sampling rate conversion.

The recording media features were utilized in wow evaluation. Wolfe and
Howarth presented a methodology for parasite FM cancelation in analogue tape
recordings [45,46]. The proposed procedures utilize information about the carrier
speed variation extracted from the magnetic bias signal.

The magnetic bias as well as the power line hum, which is also suitable for
wow extraction, were studied by authors of this paper [39,40]. In authors’ ap-
proach both artefacts are read synchronously with the audio content and are
post-processed to obtain the wow characteristic. Based on this information the
restoration is performed using non-uniform resampling [38].

Notwithstanding all of the cited proposals there is still a need for further
algorithmic approach to the wow restoration as it can be very complex sharing
periodic or accidental nature. Therefore this paper, addresses the problem of
wow extraction, in this case also employing soft computing.

Although both distortions (wow and noise), seem to be significantly different
in terms of algorithmic solutions used for restoration, and also in terms of per-
ception,they both must be considered simultaneously in the signal reconstruction
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process. It is necessary, due to the fact that wow (if introduced first), may disturb
stationary character of noise, and may affect noise reduction algorithm perfor-
mance. In case of such a scenario, it is necessary to carry out wow compensation
as the first step, and noise reduction as the next one, assuming that the wow
compensation algorithm will restore the stationary character of noise. Alterna-
tively, if the additive and stationary noise have been introduced before the wow
modulation occurred, the processing stages must be reversed (i.e. noise should
be removed first), because demodulation process influences stationary character
of noise. It must be stressed that only non-white noise is sensitive to the para-
site modulation disturbance (simply because its frequency characteristic is not
flat, thus shifting spectral components by frequency modulation locally affects
noise spectrum shape.This will be demonstrated in the experiments section. It
is also important to mention that for the case of archival recordings, acoustic
noise almost always has the non-white character. The unpredictability measure
which is an important factor allowing noise recognition and reduction can be
also interpreted in terms of rough set theory. This observation is bridging the
gap between the meaning of uncertainty in signal processing and the notion of
uncertainty in some soft computing methods.

2 Noise Removal Algorithm

Modeling of the basiliar membrane behavior, especially masking phenomena oc-
curring on this membrane, is one of the most important feature of the contem-
porary audio coding standards [27,28], although it may be applied also for the
noise reduction purposes [29,30]. More detailed information on psychoacoustics
principles of signal processing can be found in abundant literature [24][47][48][49]
and also in our papers [25][30].

The tonality descriptors play a very significant role in perceptual filtering.
Application of the precise perceptual model [30], requires calculation of the Un-
predictability Measure parameter [49] for each spectrum bin, in each processing
frame, based on which it is then possible to calculate the masking offset. The
masking offset for the excitation of bx Barks at frequency of bx Barks is given
by the formula:

Ok,x = αt
k · (14.5 + bark(x)) + (1− αt

k) · 5.5. (1)

The tonality index αt
k of the excitation of bx Barks is assumed to be related

directly to the Unpredictability Measure parameter (αt
k = ct

k), where ct
k is cal-

culated in the following way:

ct
k =

√
(rt

k · cosΦt
k − r̂t

k · cos Φ̂t
k)2 + (rt

k · sinΦt
k − r̂t

k · sin Φ̂t
k)2

rt
k + |r̂t

k|
. (2)



Intelligent Algorithms for Movie Sound Tracks Restoration 127

for rt
k denoting spectral magnitude and Φt

k denoting phase, both at time t , while
r̂t
k and Φ̂t

k represent the predicted values of Φt
k , and are referred to the past

information (calculated for two previous signal sample frames):⎧⎨⎩
r̂t
k = rt−1

k + (rt−1
k − rt−2

k )

Φ̂t
k = Φt−1

k + (Φt−1
k − Φt−2

k )
⇒

⎧⎨⎩
r̂t
k = 2rt−1

k − rt−2
k ,

Φ̂t
k = 2Φt−1

k − Φt−2
k .

(3)

Thus, based on the literature [47], the masking threshold of the Basilar mem-
brane T , stimulated by the single excitation of bx Barks and of magnitude equal
to Sx is calculated with regard to:⎧⎨⎩

Ti,x = Si · 10−s1·(bx−bi)/10−Oi,x , bx ≤ bi,

Tj,x = Sj · 10−s2·(bj−bx)/10−Oj,x , bx > bj .
(4)

where Si,Sj are magnitudes related to excitations bi,bj and global masking
threshold is obtained by summing up all of individual excitations.

2.1 Perceptual Noise Reduction System

The perceptual noise reduction system [25], requires an assumption that the
acoustic noise is of additive type. The spectral representation of the disturbance
is obtained with the use of spectral subtraction techniques [50]. Because noise
suppression in this approach is based on masking some spectral components
of the disturbing noise, it is necessary to determine which components should
be masked and which should act as maskers. For this reason, so called rough
estimate X̂ref (jω) of the clean signal’s spectrum is obtained with accordance to
spectral subtraction method [50] based on the iterative algorithm represented
by the Noise Masking block in Fig. 1.

The algorithm was proposed earlier[29,30], however it was recently improved
and extended with a learning decision algorithm. The new Decision System mod-
ule [25] containing a neural network is responsible for determining which com-
ponents are going to be treated as maskers U(useful components), and which
represent distortions and are going to be masked D (useless components). The
basic classification (without neural network application described in Sect. 4) can
be carried out on the basis of the following expressions:

U = {X̂ref
i ; |X̂ref

i | > T ref
i ∧ |Yi| > T Y

i , 1 ≤ i ≤ N/2}. (5)

D = {Yi; |X̂ref
i | ≤ T ref

i ∨ |Yi| ≤ T Y
i , 1 ≤ i ≤ N/2}. (6)

where i denotes spectrum component indexes, U and D are sets containing useful
and useless information. T ref is the masking threshold caused by the presence
of X̂ref (jω) , and T Y is the masking threshold of the input signal: Y ref (jω).

Lowering of the masking threshold preserves more noise of the input signal,
so the influence of the reconstruction filter is significantly smaller than it is in
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Fig. 1. General lay-out of noise reduction system

case of the uplifting method, giving less distorted output signal. Modified global
masking threshold T β

x at barks can be calculated with regard to formula:

T β
x =

∑
j∈UL(x)

Tj,x +
∑

j∈DL(x)

T β
j,x +

∑
i∈UH (x)

Ti,x +
∑

i∈DH(x)

T β
i,x. (7)

where T β
i,x and T β

j,x represent new masking thresholds, caused by reduced sin-
gle excitations and β is vector containing reduction factor values for the noisy
components. UL(x) and UH(x) (similarly DL(x) and DH(x)) denote subset of
U(or subset of D ) containing elements with frequencies lower or equal (L) to bx

barks, and frequencies higher than bx barks (H).
Since values of β may differ for the elements of D, and changing each value

affects T β
x , thus it is impractical to calculate all reducing factor values directly.

For this reason sub-optimal iterative algorithm was implemented [11].
The value of StopThreshold should be larger or equal to 0. In practical ex-

periments choosing StopThreshold = 0.01 compromises both noise reduction
quality and computational efficiency.

2.2 Unpredictability Measure Application

Calculation of the masking offset, described by Eq. 1 plays a significant role in
the masking threshold calculation. In noisy signals, tonal components that are
occurring just above the noise floor, may be not very well represented by the
Unpredictability Measure (UM) parameter due to the strong influence of the
noisy content. A practical solution to this problem is extending time domain
resolution, by increasing overlap of the frames used only for unpredictability
calculation. Standard Unpredictability Measure (2-3) refers to the fragment of
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input: Magnitude spectrum of signal S, a set of noisy components D
output: Masking threshold T ,Reducing factor values β

Calculating initial masking threshold ;
T β

x ← CalculateThreshold ;

βx← Tβ
x

SD
x

;

Stop condition;
while ∀x ∈ D : min(βx) < 1 ∧ max(βx) − min(βx) < StopThreshold do

Reducing distance between noisy components and masking threshold ;
foreach x ∈ D do

SD
x ← SD

x · βx;
end
Calculating current masking threshold and current reducing factor values;
T β

x ← CalculateThreshold ;

βx← Tβ
x

SD
x

;

end

Algorithm 1. Algorithm for Reducing Factor Values Computation

the signal represented by 3 consecutive frames, i.e. beginning of this fragment
( Tstart) is at the beginning of the frame with t − 2 index and the end of the
fragment (Tstart ) is at the end of frame with t index, with accordance to (3).
Consequently, the same fragment is divided into N equally spaced frames, so
that the improved UM can be expressed as:

c̄t
k =

1
N − 2

N−2∑
n=1

ctn

k . (8)

where

ctn

k =
dist
(
(r̂tn

k , Φ̂tn

k ), (rtn

k , Φtn

k )
)

rtn

k + |r̂tn

k | . (9)

and⎧⎨⎩
r̂tn

k = rtn−1
k + (rtn−1

k − rtn−2
k )

Φ̂tn

k = Φtn−1
k + (Φtn−1

k − Φtnt−2
k )

⇒

⎧⎨⎩
r̂tn

k = 2rtn−1
k − rtn−2

k ,

Φ̂tn

k = 2Φtn−1
k − Φtn−2

k .

(10)

while Tstart ≤ tn − 2 < tn − 1 < tn ≤ Tstop and ct
k = c̄t

k .

Additionally, classification of the spectrum components in non-linear spectral
subtraction, can be extended by some psychoacoustic parameters, i.e. the tonal-
ity description values. By analyzing time-frequency domain behavior of the UM
vectors calculated for each frame, it is easy to spot tracks representing harmonic
content of the signal, even though the simply averaged sequence may not result
in very high c̄t

k. Basing on this observation, artificial neural network was de-
ployed as the decision system for classifying, ctn

k patterns. A set of training data
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was obtained from the noise fragment and from the noisy signal - ctn
k vectors of

the noise represented useless components, while those obtained from the noisy
input signal, classified as useful components with standard spectral subtraction
algorithm, represented patterns of the useful signal. The neural network used in
the training was a feed-forward, back-propagation structure with three layers.
The hyperbolic tangent sigmoid transfer function was chosen to activate first
two layers, while hard limit transfer function was employed to activate the out-
put layer. The weights and biases, were updated during the training process,
according to Levenberg-Marquardt optimization method. A method of control-
ling the generalization process was also used. Such an approach is very effective
for recovering sinusoidal components, however it does not significantly improve
recovery of non-tonal components. It allows to increase efficiency of the tonal
components detection by 60%, which results in decreased amount of artefacts
in processed signals, but does not reflects Signal-to-Noise-Ratio (SNR) signif-
icantly. As was said, the UM vectors calculated for each frame may represent
useful or useless components, depending on the current content of the processed
frame. Instead of the neural network also the rough set inference system can
be applied to provide the decision about the kind of the frame content. Since
the basic rough operators (the partition of a universe into classes of equivalence,
C-lower approximation of a set X and calculation of a positive region) can be
performed more efficiently when objects are ordered, the applied algorithm of-
ten executes sorting of all objects with respect to a set of attributes [11]. The
vectors c̄t

k recorded for consecutive signal frames can be gathered in the form of
a decision table T. The values of ctn

k are conditional attributes and binary values
associated to the vectors c̄t

k provide decision attribute dk. Therefore the object
dkin the table is described by the following relation:

ct1

k , ct2

k , ..., ctN−2

k => dk (11)

The rule discovery procedure based on the rough set principles assumes that
only conditional attributes require quantization. The uniform quantization is
proposed to that end in the presented concept. In the execution mode, the input
vector of noisy audio parameters c̄t

k is quantized, and then processed by the
set of generated rules. Subsequently, the algorithm splits the decision table T
into two tables: consisting of only certain rules and of only uncertain rules. For
them both, there is additional information associated with every object in them
concerning the minimal set of indispensable attributes and the rough measure.
The rough measure of the decision rule provides one of the most basic concepts
related to rough set theory.

There is an interpretation dependency between the rough measure and the
unpredictability measure c̄t

k as in eq. (8). The notions that can be found in the
literature, such as: Measurement Uncertainty, Sampling Uncertainty, Mathemat-
ical Modelling Uncertainty, Causal Uncertainty are all related to the problem
of making uncertain decisions. The noisy data processing is an evident example
of making uncertain decisions, because UM (Unpredictability Measure) repre-
sents the margin of uncertainty while interpreting spectrum shape in terms of
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useful or useless components representation. Similar approach was tried by one
of authors in the past [11] [29] bringing evidence that rough set decision system
provides a valid alternative to the neural networks applied to this kind of exper-
iments. A fundamental notion of the rough set-based learning system is the need
to discover dependencies between given features of a problem to be classified.

The concepts related to rough measure of the rule μRS are well covered in the
literature. This measure associated with each rule is defined as follows:

μRS =
|X ∩ Y |
|Y | (12)

where: X- is the concept, and Y - the set of examples described by the rule.
A parameter was defined also allowing one to optimize the rule generation

process, e.g. in pattern recognition tasks [10]. This parameter was called the
rule strength r and is defined as follows:

r = c(μRS − nμ), (13)

nμ ∈< 0, 1) (14)

where: c - number of cases supporting the condition part of the rule,
nμ- neutral point of the rough measure.
The neutral point nμ of the rough measure μRS is one of the parameters of the

rule generation system to be set experimentally by its operator during the testing
of the system. This parameter allows the regulation of the influence of possible
rules on the process of decision making. The value of nμ is selected experimentally
after building the knowledge base of the system, so that it becomes possible for
an operator to adjust the amount of noise to be suppressed through influencing
the margin of uncertainty related to qualifying components to disjoint sets of
useful and useless ones [11].

3 Parasitic Modulation Compensating Algorithm

The wow defect distorts the tonal structure of contaminated audio signal thus
tonal component analysis was found to be very useful for wow defect evaluation
[32]. The analysis of tonal components was proposed to be performed by means
of sinusoidal modeling approach. This approach expresses the audio signal as a
sum of sinusoidal components having slowly-varying frequencies and amplitudes.
For the audio signal x(t) the following relation can be shown:

x(t) =
P∑

p=1

ap(t)cos
(
φp(t)
)
. (15)

φp(t) = φp(0) + 2π
∫ t

0

fp(u)du. (16)

where P corresponds to number of sinusoidal components (partials). The param-
eters ap and fp correspond to amplitude and frequency values of partial. The
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successive values of fp ,which create the frequency track, also called MQ track,
are processed to obtain the wow modulation pattern called P itchVariation Curve
(PV C) [37]. The block-diagram depicting main stages of sinusoidal modeling
approach is presented in Fig. 2. In the first stage (Time-Frequency Analysis),

x(t) Time
Frequency
Analysis

Partial
Tracking

Tonal
Component
Evaluation

Fig. 2. Block diagram of sinusoidal modeling approach

joint time-frequency analysis is performed. In most applications the Short-time
Fourier Transform (STFT ) is used. Since frame-based processing is usually ap-
plied, DFT of every time (analysis) frame is computed. The second stage (Tonal
Component Evaluation) determines the tonal components in every frame, which
are matched to existing tracks or create new ones in the last stage (Partial
Tracking).

Sinusoidal modeling is very powerful tool used mainly in additive synthesis,
however it must be noticed that sound modeling and analysis is much more
straightforward in case of monophonic than in polyphonic sources. Moreover,
sounds from archival recordings are likely to be contaminated by several dis-
tortions e.g. noises, clicks, which makes the sinusoidal analysis much harder to
perform. Finally, the wow distortion itself introduces frequency tracks modula-
tion, which if strong makes tracking process complicated.

For the mentioned reasons, a somewhat different approach to sinusoidal analy-
sis than in the case of additive synthesis applications is proposed. Since wow can
be effectively evaluated on the basis of a single component (bias, hum [39,40])
it assumed that also individual tonal components can sufficiently contribute to
wow evaluation. Therefore only the most salient tonal components are in the
interest of the presented algorithm.

The essential part of the sinusoidal analysis algorithm is the partial tracking
stage. The original approach for partial tracking, proposed by McAulay and
Quatieri [31], was based on frequency matching:∣∣f i−1

k − f i
l

∣∣ < Δf . (17)

where f i−1
k is the frequency of the processed track in frame i− 1 and f i

l is the
frequency of matched peak in frame i. The parameter Δf (frequency deviation)
is the maximum frequency distance between track and its continuation. This
approach has been continuously developed including such enhancements like
Hidden Markov Models (HMM) [51], or linear prediction (LPC)[52], however in
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most applications only magnitude spectrum information is utilized for frequency
tracking. The approach presented in this paper utilizes both magnitude and
phase spectra for partial tracking.

3.1 Frequency Track Evaluation Algorithm

The block-diagram of frequency track evaluation algorithm is presented in Fig. 3.
The consecutive analysis frames of input signal are obtained by windowing. The
Hamming is used for good main-lobe to side-lobe rejection ratio. Zero-phase
windowing is performed to remove linear trend from phase spectrum [53]. The
signal can be optionally zeropadded to improve frequency resolution. DFT of
every analysis frame is computed for magnitude and phase spectra.

In the next step, which is depicted as Peak Picking in Fig.3, candidates for
tonal components are evaluated as the meaningful peaks of magnitude spectrum
due to the following formula:

Xm(k − 1) < Xm(k) ∧ Xm(k + 1) < Xm(k). (18)

where Xm(k) is value of magnitude spectrum Xm in kth bin.
In authors’ previous papers [41,42], a special processing was employed for

reliable determination of tonal components using some known methods like Si-
nusoidal Likeness Measure [54]. In further work a different approach was taken.
It is assumed that invalid components are rejected during tracking stage [55].
This kind of tonal component validation over several frames appears to be more
appropriate than single frame validation. The peaks evaluated by (14) are sorted

DFT

Peak
Picking

True
Frequency
Estimation

Partial
Tracking

window

x(t)
magnitude

phase

amplitude

frequency

Fig. 3. Block-diagram of frequency track evaluation algorithm

due to their magnitude in order to indicate the most salient components, which
are assumed to depict wow defect most reliably. After the peaks are evalu-
ated, their true (instantaneous) frequencies are computed using frequency re-
assignment method (15)[56]. This is essential (see Sect. 4) since finite frequency
resolution introduces significant error to frequency estimation. The frequency
reassignment method assigns the value of frequency to center of gravity of each
bin instead of geometrical center [57].
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f̂0 = k
Fs

N
+ "
{
Xw′(k)
Xw(k)

}
Fs

2π
. (19)

where Xw(k) and Xw′(k) are DFT spectra using window and its derivative.
The last stage of presented processing is partial tracking. The novel approach

presented in this paper employs both magnitude and phase spectrum information
for partial tracking. The original frequency criterion for partial tracking (13)
is found very useful in track creation process however it has very significant
drawback. The criterion indicates the peaks which are closest to the processed
track, but it does not provide any further information whether the continuation
is valid or not. The frequency distance cannot be considered as the measure
because tracks variations are increasing with growth. Also track’s amplitude,
though useful during partial tracking process, does not provide such information.
It is assumed that phase spectrum analysis can supply the algorithm with this
kind of information.

For the analyzed partial having phase value φi−1
k in frame i − 1 , the phase

value predicted in frame i is equal to:

φ̂i
k = φi−1

k +
R

NDFT
. (20)

where NDFT is the length of the zeropadded DFT and R is the frame hop
distance. The error of phase prediction can be evaluated as:

φerr =
∣∣φ̂i

k − φi
l

∣∣. (21)

The prediction error φerr is in the range [0;π). The value near 0 suggests phase
coherence in two adjacent frames. Otherwise, if value of error is near π, it may
indicate phase incoherence and invalid track continuation (see Sect. 4).

The presented algorithm for partial tracking employs frequency matching cri-
terion (13) for continuity selection and phase prediction error (17) for validation
of that continuity. The track termination is associated with a high value of phase
prediction error, being different approach from the original frequency deviation
condition (13).

3.2 PV C Generation

PV C (P itch Variation Curve) controls the non-uniform resampler during wow
compensation process [38,39]. The PV C can be obtained from a tonal component
by normalization of its values. The normalization should be performed in such
way, which ensures the value of 1 for the parts of signal which are not distorted. In
the presented approach it is assumed that a first few frames are not contaminated
with the distortion. Thus the normalization of tracks values to relative values is
performed in the following manner:

RFk(i) =
f i

k

f1
k

. (22)
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where f i
k is the value of frequency track in the frame i ,and f1

k is the value of
frequency track in the first frame.

It is sufficient to utilize only one frequency track for PV C generation, when
there is a frequency track which has valid values throughout the whole selected
region. More often, however, PV C must be evaluated on the basis of a few
tracks. The median was found to provide a satisfactory PV C evaluation for this
purpose. The median-based PV C is evaluated as follows:

PV Cmedian(i) = median
(
RFk(i)

)
. (23)

The accuracy of PV C computation according to the presented manner depends
strongly on the accuracy of tonal component evaluation. Thus the main effort
in the presented approach is put on validity of tonal component tracking.

4 Experiments and Results

The presented experiments concern the presented issues of noise reduction, wow
evaluation and wow-noise dependencies respectively. The sound examples of pre-
sented experiments are available at the web site [58].

4.1 Experiments Concerning Noise Reduction

It is important to notice, that for the comparison purposes in the informal sub-
jective tests the same spectral subtraction algorithm was used to calculate the
rough estimate ˆXref as for the perceptual reconstruction. Figure 4 presents
time-domain changes of the masked noise for a female singing recorded with
44100 Hz sampling rate. The second part of the experiments was devoted to
analysis of the performance of the intelligent unpredictability measure pattern
classification employed to spectral subtraction. Spectrograms in Fig. 5 present
signal recovered with the standard linear spectral subtraction method, and with
spectral subtraction improved by the UM vector classification system (as de-
scribed in Sect. 2.2).

4.2 Experiments Concerning Wow Compensation

For the experiments some archival recordings from the Polish National Film
Library and from the Documentary and Feature Film Studio were chosen. The
sound examples, taken from magnetic sound tracks, were mainly contaminated
with accidental wow. Figures 6 and 7 reveal the motivation for the use of phase
prediction error. In both figures the fragments of frequency tracks are displayed
simultaneously with the value of the phase prediction error. In Fig. 6 the low
value of the phase prediction error corresponds to continuous frequency track
(solid white line in the spectrogram). Figure 7, on the other hand, presents the
track which is terminated due to the high value of the phase detection error.
This example shows that the track’s phase analysis may effectively contribute
to track evaluation stage.
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Fig. 4. Time-varying SNR for 24 dB noise attenuation, calculated for each processed
frame, for input signal (the lowest curve), for perceptually reconstructed signal (the
middle curve) and for signal restored with spectral subtraction method (the highest
curve), which was used as the rough estimate of the restored signal

Fig. 5. Spectrograms of signal restored with spectral subtraction (upper plot),
and with spectral subtraction enhanced by intelligent pattern recognition system
(lower plot)



Intelligent Algorithms for Movie Sound Tracks Restoration 137

Time (s)

F
re

qu
en

cy
 (

H
z)

0 0.1 0.2 0.3 0.4 0.5
0

500

1000

1500

2000

2500

3000

(a) The correctly evaluated frequency track

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

P
ha

se
 P

re
di

ct
io

n
E

rr
or

 (
ra

d)

(b) Phase prediction error of the evaluated track

Fig. 6. Evaluation of correctly frequency track and corresponding phase prediction
error

The next plot (Fig. 8) shows the outcome of the true frequency estimation of
tracks values. It can be noticed that the slow modulation of the track (thin line)
was not detected due to a finite frequency resolution of DFT . However when a
frequency reassignment is applied the true shape of wow modulation is extracted
(thick line).

The algorithm applied to the fragment of archival magnetic soundtrack re-
sulted in tonal component detection showed in Fig. 9. In the presented example
the additional parameter, which controlled the maximum number of tracks was
set to 8.

Figure 10 shows two PV Cs. The first one (thin line) was evaluated according
to (19), i.e., the median-based estimate, utilizing the tracks displayed in Fig. 9.
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(b) High values of phase prediction error indicating track
termination

Fig. 7. Evaluation of terminated frequency track and corresponding phase prediction
error

The other PV C (thick line) was computed on the basis of only one track from
the same sound excerpt. The latter enabled a nearly transparent reconstruction
since the tracks variations corresponded to the distortion’s variations. The PV C
was based on estimation from the set of tracks also resulted in a satisfactory
reconstruction, however, it was possible to hear a difference between these two
reconstructions. This implies that in cases where wow can be evaluated from an
individual component, this kind of a processing should be performed. However,
more common situation is that PV C has to be computed using a set of evaluated
tracks thus the median-based PV C estimation should be used (see (19)).
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Fig. 8. Improvement of frequency resolution by means of frequency reassignment
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Fig. 9. Spectrogram of analyzed sound and evaluated frequency tracks

4.3 Experiments Concerning Wow and Noise Dependencies

The most common situation in case of archival recordings is the simultaneous
existence of various distortions, e.g.: noise, wow, hiss, clicks etc. Therefore it is
very essential to apply the algorithms in the right order to get the best sub-
jective quality of the restored sound. The aim of this section is to show some
dependencies between the two distortions: wow and noise.

The performed experiments utilized the two algorithms presented in this pa-
per. The algorithms operated on a clarinet sound with the simulated noise and
the wow distortion respectively. The sound spectrogram is presented in Fig. 11.
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Fig. 10. Fragment of PV C courses. Thick line corresponds to PV C evaluated from
single track. Thin line corresponds to PV C evaluated from a set of tracks.

Fig. 11. Spectrogram of clarinet sound with noise and wow distortion

It can be noticed that the noise is modulated, i.e., its stationarity is distorted,
due to subsequently added wow. In such situation two restoration scenarios are
available. The first scenario involves the noise reduction before the wow compen-
sation. The result of this operation is showed in Fig. 12. It can be noticed in the
spectrogram that this processing introduced some parasite artifacts, i.e., noise
modulation, to the restored signal. The result of the second restoration scenario
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Fig. 12. Spectrogram of reconstructed signal. Wow removal was performed before
noise removal which resulted in parasitic artefacts.

Fig. 13. Spectrogram of restored sound. Noise removal was performed before wow
which resulted in valid restoration of the sound.

which involved firstly the wow compensation and the noise reduction afterwards
is given in Fig. 13. Contrarily to the first restoration, the restored sound does
not contain any audible defects. Also no visible artifacts can be noticed in the
spectrogram.
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5 Conclusions

As an extension of the spectral subtraction, the intelligent-pattern-recognition
system involving the Unpredictability Measure for spectrum components classi-
fication was presented. Applying some properties of the human auditory system
to noise reduction allowed preserving much more of the input signal’s energy
and consequently enabled decreasing unfavorable influence of the reconstruction
filter. An artificial neural network was successfully applied as the decision sys-
tem for classifying uncertain noisy spectral patterns. An application of the rough
set decision system to this task was also discussed. Thus the elaborated method
allowed more effective noise reduction characterized by a small number of the
parasite artifacts.

The utilization of frequency tracks enabled compensation of wow distortion.
It was found that the employment of the magnitude and phase spectrum in
partial tracking process improved its tracking abilities comparing to the earlier
algorithms [42]. The introduction of the phase prediction error criterion enabled
the validation of the tracking procedure. Thereby the tracking algorithm was
found to be more suitable for distorted polyphonic sounds comparing to the
original magnitude-based approach.

The experiments concerning wow and noise dependencies showed that during
the restoration process much attention must be paid to applying the restoration
algorithms in the correct order. The experiments also showed that wow influences
other distortion characteristics, e.g., the noise stationarity, thus it can seriously
affect the quality of the restored sound.
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Abstract. This research study is intended to analyze emotionally-
charged animated character’s gestures. Animation methods and rules
are first shortly reviewed in this paper. Then the experiment layout is
presented. For the purpose of the experiment, the keyframe method is
used to create animated objects characterized by differentiating emo-
tions. The method comprised the creation of an animation achieved by
changing the properties of a temporal structure of an animated sequence.
The sequence is then analyzed in terms of identifying the locations and
spacing of keyframes, as well as the features that could be related to
emotions present in the animation. On the basis of this analysis several
parameters contained in feature vectors describing each object emotions
at key moments are derived. The labels are assigned to particular se-
quences by viewers participating in subjective tests. This served as a
decision attribute. The rough set system is used to process the data.
Rules related to various categories of emotions are derived. They are
then compared with the ones used in traditional animation. Also, the
most significant parameters are identified. The second part of the exper-
iment is aimed at checking the viewers’ ability to discern less dominant
emotional charge in gestures. A time-mixing method is proposed and
utilized for the generation of new gestures emotionally-charged with dif-
ferentiated intensity. Viewers’ assessment of the animations quality is
presented and analyzed. Conclusions and future experiments are shortly
outlined.

Keywords: animation, rough set analysis, subjective tests, emotion,
non-verbal modality.

1 Introduction

At the beginning of XX century, simultaneously with the invention of the movie,
the animation was born. At the very early stage of animation, to create the
animated motion, a small black-and-white picture was drawn on several layers
of celluloid. Continuity of motion was achieved by introducing very small changes
between each frame (cel), drawn one after one. Later the color drawing on papers
and on foils attached to the peg was invented. Therefore it was possible to
create frames in varied order – first most important and powerful poses were
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designed, then transitional frames were filled in, called also in-betweens [3]. The
same approach is utilized in the computer animation systems with keyframes
[22]. Both traditional and computer keyframe animation aim at animating a
character with a highly human appearance, personality and emotions though
using different artistic and technical means [20,22].

Correct utilization of poses and transitions between them can implicate differ-
ent emotional features of the character’s motion. As a result of experience derived
from the first years of traditional animation the animation rules were created
in 1910 by the animators from the Walt Disney studio. These rules state how
to achieve specified features, utilizing posing, keyframes, and phases of motion
[20,22]. The know-how of a hand-made animation and the rules are being passed
through generations of animators. They have a subjective nature, and were never
analyzed by scientific means. That is why the starting point of this study is to
analyze animations by means of the classification system based on rough sets
which is a very suitable method while dealing with uncertain, subjective data
[15,16].

We start our work with these traditional animation rules and our aim is
to check whether it is possible to generate adequate rules based on motion
parametrization and rough set analysis. Further, this is to see whether it is pos-
sible to generate automatically animation sequences with a desired emotional
features based on the knowledge base and rules generated by the rough set
method, without an animator interference.

Communication between humans extends beyond verbal techniques. Gestures
comprising body and head movements, and also postures are often employed
to convey information in human-to-human communication. Moreover, in some
situations they can deliver or enhance the unspoken or obscured by noise speech
message. Perception of gestures is also very rarely misinterpreted. This non-
verbal modality is therefore of a great importance [6,9], and can be easily associ-
ated with emotions. In the paper of Mehrabian [12], and also Hatice et al. [8] it
was stated that 93 percent of human communication is nonverbal and the most
expressive way humans display emotions is through facial expressions and body
gestures.

Therefore, the scenario for this study is as follows. One can analyze and pa-
rameterize features of a hand-made animation and then correlate them with
the description of emotions. These data can be utilized for the creation of a
knowledge base containing feature vectors derived from the analysis of the ani-
mated character’s emotions. In that way the animator’s tasks would be limited
to designing a simple animated sequence, and delivering a description of the
desired emotions to the expert system. These data should next be processed in
the system, in which the animation parameters are modified, and as a result an
emotionally-featured animation is generated. The next phase is the assessment
of the conveyed emotion rendered into the animation to confirm its quality. The
second part of the experiment, presented in this paper, concerns checking the
viewers’ ability to discern less dominant emotional charge in the gestures of the
character. A time-mixing method is proposed and utilized for the generation
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of new emotionally-charged gestures with graded intensity. The viewers’ assess-
ment of the created animations quality is presented and analyzed. The second,
and the superior aim of this research is however to design a system designated
for the computer-based animation that would be capable to create more realistic
animations according to the animator’s requirements. Elements of such a system
are shortly described.

This paper presents an extension of the research study carried out by the
authors in the domain of animation [11]. The first part (Sections 1-3) presents a
revised version of the original paper, and the second part (Section 4) describes
new work, i.e. animation generation experiments focused on of emotional features
contained in motion. In addition future work is outlined.

The paper is organized as follows: Section 2 briefly reviews research on ap-
plication of computer methods in animation domain, and problems related to
acquisition of emotional features contained in motion. Section 3 is related to the
parametrization of animation and to the analysis of experimental data collected
during subjective tests. Section 4 presents an animation generation method and
then focuses on subjective verification of quality of generated animations. Sub-
jective scores gathered from the experts are next analyzed and an attempt to
automatically classify emotional features is made. Section 5 presents conclusions,
and in Section 6 future experiments are outlined.

2 Computer-Based Animation Methods

The simplest definition of the animation process is the creation of motion by
changing the properties of objects over time. A keyframe is a time point when
a property has been set or changed. In traditional animation master animators
draw the keyframes and assistants do all the in-between frames. In computer
animation in-between frames are calculated or interpolated by the computer.
The animator first sets up main poses in time and space then the system fills
in the transitional frames by interpolating locations, rotations and torque of
objects and characters’ skeletons. The interpolation process, i.e. the acceleration,
slow-in and slow-out phases can be changed, and keyframes may be inserted or
transposed. Although the computer animation process is much faster than the
traditional one, the quality of computer animations still lacks naturalness or
individual style.

As was mentioned in Section 1, a set of rules was proposed by traditional ani-
mators, describing technical means to achieve realistic and emotionally featured
motion. One of the basic rules is anticipation. This refers to the preparation
for an action. Before the main action starts there should always be a prepara-
tion for it, which is a slight movement in a direction opposite to the direction
of the main action. If the preparation phase is long, the performing character
will be perceived as weak, or hesitating. Short anticipation gives effect of a self-
confident, strong character. Follow-through is a rule related to the physics of
the moving body. The motion always starts near the torso: first the arm moves,
then the forearm, and the last is the hand. Therefore keyframes for bones in
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the forearm and hand should be delayed comparing to the arm bone. The de-
lay adds a whip-like effect to the motion, and the feeling of the elasticity and
flexibility. Another rule connected to the physiology of motion is overshoot. The
last bone in the chain, for example the hand, cannot stop instantly. It should
overpass the target position, go back to it, and finally slowly stop. Stops are
never complete. A rule called ’moving hold’ is related to keeping a character in
a pose for some time. Very small movements of the head, eyes, and limbs should
be introduced to maintain the realistic quality of the motion. Natural motion
almost always goes along arcs. Only a vertically falling object moves absolutely
straight. Rotation of joints in human body implicate curve moves, but also head
movement from left to right if straight, will not appear to be natural. Other
rules, not mentioned here, are related to staging, i.e. posing a character in front
of the camera, exaggeration of motion, squashing and stretching for achieving
cartoon-like effects, and so on. These rules do not lie within the scope of the
objectives of this research study.

Numerous research studies have been devoted to achieving a realistic motion
with computer methods. Physical simulations of a human body motion were
created, resulting in a realistic motion during jump, flight, free fall, etc. [7]. In
these cases it is always necessary to assign boundary conditions such as how
the motion starts, when and where it should stop, and on this basis the tran-
sitional phase is calculated. Such a method makes the animation realistic but
neglects emotional features. An attempt was also made to connect emotions and
energy corresponding to the motion, therefore a highly energy-charged motion
was assumed as happy and lively, and a low energy consuming motion as tired
and sad. In self-training algorithms the energy consumption was utilized as the
target function. The method was tested on a 4-legged robot creature, and is still
in the research phase [14].

Genetic algorithms and neural networks were applied to create a model of a
human, and to teach it to move and react in a human-like manner [21]. Data
related to the physiology of a human body were gathered and the target functions
were composed related to keeping vertical position, not falling over, and reaching
a desired location on foot. A system developed for this purpose was trained to
accomplish the mentioned tasks. Various behaviors were implemented, such as
walking, falling, running, limping, jumping, reacting to being hit by different
forces, but the developed method actually lacks in emotional acting. There were
also some efforts to create new controllers for the animation process. For example
a recorded motion of the pen drawing on the computer tablet is mapped to some
motion parameters, like changes of location, rotation and speed of the selected
character’s bone, or the movement of the character’s eyes. It gives the animator
new technical means to intuitively act with the controller, and map that action
onto the character [18]. A very similar and well-known method is the motion
capture [4], consisting of the registration of sensor motions, which are attached
to the key parts of the performer’s body. It is possible to use a single sensor as
a controller for the selected motion parameter [17]. Unfortunately this method
is expensive, moreover processing of the captured data is very unintuitive and
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complex, and in this case the editing by hand is nearly impossible. A more
advanced version of motion capture, called performance capture, introduces the
recording of facial expressions with similar equipment (sensors are attached in
crucial points of the face). The results can be seen in a computer-animated movie
”The Polar Express”, with Tom Hanks playing five roles – a main child character
and some adult characters [23].

Advanced computer-based animation methods for motion generation may re-
sult in a psychological effect called ”Uncanny Valley” [13]. One of the results
of increasing anthropomorphism of animated characters is the growth in the
viewers’ positive emotional response. At some point, however, when a character
very closely resembling a human being still misses some human nuances, view-
ers suddenly tend to express disquiet and negative response. Developing further
anthropomorphism increases a positive response, until full human features are
reached (Figure 1). As Bryant stated, judging from the relative depth of the
curves Mori apparently considers motion more important than simple appear-
ance, though he stresses that both are affected at least as much by subtle nuances
as by more striking factors [5]. Examples of uncanny valley effect are present
in some recent computer-animated movies like almost-photorealistic ”Final Fan-
tasy: Spirits Within”, ”The Polar Express” mentioned above, and ”Final Flight
of the Osiris” (part of the Animatrix movie). Based on the reaction of the audi-
ence, animators cannot agree whether a human-like motion in animations should
be kept below uncanny valley to avoid the sense of wrongness, or should it be
increased to achieve full resemblance to a human being.

Methods mentioned above either generate motion neglecting its emotional
features, or allow live motion recording and processing but have no means to
record features related to emotion. Our work is focused on adapting animation

Fig. 1. Illustration of uncanny valley effect [13]
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rules to computer generated animation. Parametrization of animated motion
and analysis of its features perception along with guidelines derived from the
traditional animation should enable to generate motion with explicit emotional
features as required by an animator.

3 Experiment Layout

This Section presents the experiment framework. It is assumed that the ani-
mated motion could be described in a similar way as the animator describes it.
This means that using the data of the character’s bones in keyframes along with
the interpolation data is sufficient to comprehensively analyze and generate re-
alistic and emotionally featured motion. It is assumed that the animation rules
presented earlier are related to these data, thus it is desirable to treat them as
a knowledge base, and to evaluate both the correspondence to emotional fea-
tures of a motion, and the parameterization effectiveness performed in terms of
categorization.

The first stage of our work involves an analysis of a created animation. It
determines the important parameters of the animation in terms of automatic
classification, such as temporal information, an example of which are the time-
related parameters describing the positions of keyframes in the animation. These
parameters are analyzed in terms of usefulness for the recognition of the emotion.
The next stage is to remove redundant and unimportant parameters. Then the
assumption is made and verified that the parameters classified as important for
automatic classification are also important for human viewers. Next, based on
the above information, more advanced animations are prepared by changing the
temporal structure of the given animation sequence resulting in gradual changes
of emotion intensity. The source animations expressing two different emotions
are combined together to create new sequences. Their quality and emotional
features are subjectively assessed. This serves to answer the question whether the
exaggeration seen in animated characters is not only accepted but also preferred
by the viewers.

3.1 Assessment of Emotion Expressed by Gestures

For the purpose of this study one of the authors, a semi-professional animator,
basing on animation rules described in the Introduction, created a series of an-
imations. They present two arm gestures (picking up a hypothetical thing and
pointing at a hypothetical thing) expressing different emotions: fear, anger, sad-
ness, happiness, love, disgust and surprise. Animations consist of the rotations
of joints as shown in Figure 2. In such a case none of other bone parameters
are changed. In total 36 test animations were prepared. It is assumed that each
animation should clearly reproduce the emotion prescribed. However, taking the
subjective character of emotions into account reveals that additional assessment
of perceived emotions is needed. This will help verifying the emotional definition
of each sequence.
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Fig. 2. Presentation of a chain of bones (a), possible bone rotations (b), torso with
animated arm (c)

The following subjective test was conducted. For each animation presented
in a random order, viewers were asked to classify the type of the presented
emotion, by picking only one emotion from the list, and, choosing one of the
ranks from a 3-point scale (1 - just noticeably, 2 - noticeably, 3 - definitely) in
order to denote how much the emotion was clear to them. Additional features (i.e.
strength naturalness, smoothness, and lightness of the emotion) were evaluated
within a 5-point scale (e.g. 1 - unnatural, 3 - neutral, 5 - natural). Twelve non-
specialists took part in this test. 17 of 36 animations were described by the test
participants as having different emotions than the prescribed ones. Assuming
that a subjective assessment is a very important factor while describing motion
or gestures of an animated character, the answers gathered from the viewers were
taken into account in the next stage of the analysis instead of prior assumptions
about emotions contained in the animation sequences. The results of matching
emotions with the animation sequences revealed difficulties in selecting only
one of the descriptions. The participants reported equivocal interpretations of
gestures which showed similarities e.g. between ”negative” emotions like fear,
surprise, and anger. Therefore, to deal with such uncertain data, the rough set-
based analysis [15,16] was applied for further processing. 27.9% of the acquired
data described the emotion of anger, 19.4% of fear, 16.5% of happiness, 13.3%
of love, and below 10% of disgust, sadness and surprise.

3.2 Parametrization of Animation Data

For the purpose of the analysis of the animation data, various parameters of the
keyframed motion are proposed. Parameters are based on the creation process of
the animation. In that process, first a simple animation version is prepared, with
a character’s key poses spaced in time with interpolated motion between them.
Later the animator adds other important elements of motion such as for example
anticipation and overshoot, by inserting new keyframes (Figure 3). Animations
for the test were prepared based only on the rotation of bones, therefore there
are separate keyframes for the rotations along X-, Y-, Z-axes, and in such a case
the amplitude literally means the rotation angle (see Figure 4).

Animation data are taken directly from the animation application, therefore
keyframes and parameters values are available directly. Long animated sequences
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Fig. 3. Presentation of animation parameters. Original animation is without important
elements such as anticipation and overshoot. The final animation is a variation of the
original one, with anticipation and overshoot inserted. For that purpose it is necessary
to add new keyframes, which change the curve of the motion amplitude. Keyframe times
are marked as ti, and the values of amplitude for them as ai. White range represents
analysis frame with keyframes from 1 to 5. Gray range is next analysis frame, where
keyframe 6 corresponds to frame 2, and is also responsible for anticipation phase.

Fig. 4. An animation utilizing bone rotations with keyframe numbers and motion
phases marked. Anticipation is very short (2 frames long) and subtle motion in the
direction opposite to the main motion. The main phase usually extends across many
frames and changes of rotation for bones are distinct. Overshoot is a short phase before
the complete stop, when the last bones in a chain overpass the target position (hand
bones are magnified to visualize the overpass in frame 14).
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are segmented into parts with one main motion phase and one hold phase (see
Figure 3, ”Analysis frame”). Each segment is analyzed and included as a pat-
tern in a decision table (Table 1). For each animation segment, values of ani-
mation parameters related to the amplitudes of particular phases (Aa = a2 − a1,
Am = a3 − a2, Ao = a4 − a3), their lengths (tm = t3 − t2, ta = t2 − t1,
to = t4 − t3, th = t5 − t4), and speeds (Vm = Am/tm, Va = Aa/ta, Vo = Ao/to)
are calculated. Variables ai and ti are depicted in Figure 3. The decision param-
eter for the animation segment is an emotion selected most often by the viewers
while rating the animation. This table serves as an input to the rough set sys-
tem. The system task is to evaluate rules describing interrelations between the
calculated parameters and the features of the motion.

Table 1. Decision table

Bone Rot t1 ... t5 a1 ... a5 Am tm Vm Aa ta Va Ao to Vo th Aa/Am ta/tm Decision

Arm RotX 1 ... 6 1.3 ... 1 1.2 2 0.6 1 1 1 0.5 1 0.5 2 0.83 0.5 Surprise
Hand RotY 1 ... 8 1 ... 1.4 1 2 0.5 2 2 1 2 1 2 3 2 1 Fear
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
Hand RotZ 1 ... 7 2 ... 0.5 2 2 1 1 2 0.5 0.2 1 0.2 2 0.5 1 Happiness

3.3 Data Processing

For the generation of rules based on the decision table, the Rough Set Ex-
ploration System was used [1,2,19]. During the processing, the automatic dis-
cretization of parameter values was performed. Local discretization method was
utilized. In general all parameter values (attributes) are continuous, and for pur-
pose of generalization, and processing of previously unseen object a discretization
is usually performed. Local discretization method uses Maximal Discernibility
(MD) Heuristics [2]. An attribute A is selected. The algorithm searches for a
cut value c ∈ A, which discern a largest number of pair of objects. Then all
pairs discerned by selected c are removed, and new maximal discernibility cut
value is searched for those left. The procedure is repeated until no objects are
left. Then the algorithm is repeated for next attribute A. An attribute can be
excluded from further processing, as no important for classification, if no cut can
be found.

As a result of discretization some parameters are automatically excluded at
this level as not important for defining the relations searched. 12 parameters
were left in the decision table: ’Bone’, ’Rotation axis’, the amplitude for the first
keyframe a1, the length and amplitude of the anticipation phase (ta, Aa respec-
tively), the amplitude for the anticipation keyframe (a2), the length and speed
of the main motion phase (tm, Vm respectively), the time for the overshoot
keyframe (t3), length of a hold phase (th), speed of an overshoot phase (Vo),
time for an ending keyframe (t5) (see Figure 3 for reference). There were 1354
rules containing the above parameters generated by a genetic algorithm available



Rough Set-Based Application 155

in the Rough Set Exploration System [19]. Total coverage was 1.0, and total
accuracy of the object classification from the decision table was 0.9. Shortening
of the rules resulted in a set of 1059 rules, giving total coverage of 0.905, and
the accuracy of the classification equaled 0.909.

Further steps aimed at decreasing the number of parameters. It was assumed
that parameters with 1, 2 or 3 ranges of discretization could be removed, be-
cause they are used in discerning the lowest number of object classes. As a
result classification accuracy loss should not be significant, but the number of
rules would be lower. Therefore from the mentioned 12 parameters, only 6 were
left: ’Bone’, and all the others having more than 3 discretization ranges, i.e. a1

parameter with 10 discretization ranges, ta - 12 ranges, tm - 6 ranges, t3 - 7
ranges, and th - 5 ranges. This resulted in the generation of 455 rules with total
coverage of 1.0 and the accuracy of 0.871 (compare to 0.9 for all parameters). Af-
ter shortening, 370 rules were left, giving the coverage of 0.828 and the accuracy
of 0.93.

After discarding the last amplitude parameter left at this stage i.e. a1, when
the ’Bone’ and time parameters were used, the results did not change much.
There were 197 rules, with the coverage of 1.0 and the accuracy of 0.871 - the
same as before. Also after shortening, when only 160 rules were left, the coverage
was the same as before (0.828), and the accuracy equaled 0.933. The confusion
matrix for the classification using the parameters ’Bone’, ta, tm, t3, th is presented
in Table 2. Removing by hand some additional parameters caused a great loss
in accuracy. This seems a very satisfying result, showing that time parameters
are especially important for identifying emotions in motion. In the derived 160
rules generated for five parameters, 100 use only time parameters without the
’Bone’ parameter. 102 rules have the size of 2, and 58 rules have the size of 3.
Maximal support for the rule is 29, minimal is 3, and the mean is 5.7.

For rules, related to each class, parameter values were analyzed, which resulted
in the creation of representative sets. For example, for a surprise emotion, most
objects in the decision table have ta=(7.5,8.5), tm=(17.5,Inf), t3=(45.5,51.5),
th=(18.5,19.5) for all bones, and for ’love’ - ta=(16.5,19.5), tm= (17.5,Inf), t3=
(36.0,45.5), th= (19.5,21.0). That information will be utilized later to generate
variations of animations introducing desired emotional features.

Table 2. Results of classification of objects with the derived set of 160 rules

Predicted:

Anger Sadness Love Happiness Fear Surprise Disgust

Actual: Anger 103 0 0 0 0 0 0
Sadness 4 31 0 0 0 0 0
Love 0 0 37 0 0 0 0
Happiness 0 0 0 50 3 0 0
Fear 0 0 8 0 57 0 4
Surprise 0 0 0 0 0 16 0
Disgust 0 4 0 0 0 0 24
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Examples of the derived rules are: IF (Bone=’Forearm’)AND (tm=”(-Inf,5.5)”)
THEN (Decision=Anger), and IF (ta=”(16.5,19.5)”) AND (tm=”(-Inf,5.5)”)
THEN (Decision=Anger), which can be rewritten in a natural language as: ”if the
forearm main motion phase is very short then the emotion is translated as anger”,
and ”if the anticipation in motion is long and the main motion phase is very short
then emotion is translated as anger”.

4 Animation Generation

This section presents an experiment related to combining two source animations
and assessing emotional feature of the generated result. It is verified whether
the animations generated are clearly readable to the observer, and whether their
subjective emotional features can be recognized and correctly understood by the
experts. Next an attempt is made to correctly classify all animations in domain
of their time parameters, utilizing the rough set analysis. Significant parameters
are found, and rules are generated that may enable to create new animation
sequences with adequate emotional features assigned to motion. The starting
point is however generalization of the gathered data by the rough set method.

Ten new animations were created according to the rules of traditional an-
imation as well as to the rules derived in the previous section. They present
a cartoon-like adolescent character expressing different emotions which can be
analyzed in pairs:

– 1st pair - Clasping hands together with determination or calm (occurring
often during speech)

– 2nd pair - Throwing arms into the air and dropping them back down to its
sides with anger or happiness

– 3rd pair - Reacting with fear or interest to an object appearing suddenly
within the field of view

– 4th pair - Folding arms with pensiveness or stubbornness
– 5th pair - Throwing arms down with strong disappointment (almost anger)

or fatigue

Animations consist mostly of hands gesticulation (Figure 5). An additional
motion is limited to some subtle legs and torso movements. Facial expression
is not present in this study. This is because the purpose of this experiment is
to assess emotions only by viewing gestures, thus the limitations applied should
guarantee that only gesticulation is taken into account by the test participants. In
each pair of the keyframes important poses of a body are the same, but temporal
structure varies to achieve different emotions. As stated in the previous section
time parameters are more important in conveying emotions than amplitudes.
This means that utilizing the same keyframes but changing timing can result in
producing different emotions.

In the experiment, an assumption was made that for each pair the sequences
prepared represent the extreme intensities of emotions, and a continuous transi-
tion from one emotion to another is possible. Animations originating from those
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Fig. 5. Frames from animations: a. 1st pair - clasping hands together with determi-
nation or calm (occurring often during speech), b. 2nd pair - throwing arms into the
air and dropping them back down to its sides with anger or happiness, c. 3rd pair -
reacting with fear or interest to an object appearing suddenly within the field of view,
d. 4th pair - folding arms with pensiveness or stubbornness, e. 5th pair - throwing arms
down with strong disappointment (almost anger) or fatigue
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with extreme intensities but conveying emotion with different intensity were
then generated. Therefore for each pair three new sequences presenting combi-
nation of extreme intensities are generated by applying the so-called time-mixing
method of interpolation in the time domain. Since time-related parameters are
the most significant while characterizing emotional features of motion, thus the
interpolation takes place in time domain.

– For each sequence all phases such as: anticipation, main motion, overshoot
and stop phase were numbered.

– Corresponding keyframes in both sequences in pairs were found.
– Time parameters of the corresponding keyframes were denoted as tineg, tipos,

where i states the phase number, neg means that the keyframe originates
from the first emotion in a pair, and pos means that the keyframe originates
from another one, the latter does not necessarily mean that emotions are
either positive or negative.

– For each i new values of tij were calculated according to the following ex-
pression: tij= tineg + (tipos - tineg) ·j/(n + 1), where n = 3, and j = 1, 2...n
(generating more sequences requires higher n); j denotes the intensity of emo-
tions, i.e. j = 1 result in animation quite similar to first animation in pair
(that with keyframes tineg), j = 2 result in animation with time parameters
equally spaced between two source animations, for j = 3 animation is closer
to second one (that with keyframes tipos). The values of tij are rounded to
integer value.

– jth new sequence was generated by exchanging time parameters tineg in the
original sequences for tij for each i.

New sequences are derived from the combinations of two original sequences in
the domain of time positions of their keyframes (we call it time-mixing). It can
also be interpreted as linear combination of two vectors of animation keyframe
times, with weights j/(n + 1) and (n + 1 − j)/(n + 1). Altogether, each of the
five sequences forms a set of test signals in subjective tests.

Fig. 6. Time positioning of the animation keyframes in one set. From top to the bottom:
the original first sequence (’determination’), transitions generated between two original
sequences resulting in j1, j2, j3 sequences, and the second original sequence (’calm’).
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4.1 Subjective Test

The aim of the subjective test was to verify if a linear combination (time-mixing)
of animations representing two different emotions can result in a realistic, read-
able animation with an emotion of a lessened intensity, but still a clear one. 24
persons took part in the test. Their task was to assign an appropriate label to
the emotions presented in the sequences. From each set, two sequences were ran-
domly chosen and displayed three times. If the rendered emotions were the same,
the assignment should go to the one with higher intensity. Any uncertainty was
to be marked with a question mark. Table 3 shows the percentage of selected
options for each test sequence in five sets.

Table 3. Results of emotion assessment

1st set: 2nd set:
Emotion perceived [%]: Emotion perceived [%]:

Signals: calm determ. uncertain Signals: anger happiness uncertain

calm 93.8 6.3 0.0 anger 56.5 32.6 10.9
j1 95.8 2.1 2.1 j1 50.0 41.3 8.7
j2 85.4 6.3 8.3 j2 45.7 47.8 6.5
j3 43.8 50.0 6.3 j3 28.3 50.0 21.7
determination 33.3 62.5 4.2 happiness 0.0 100.0 0.0

3rd set: 4th set:
Emotion perceived [%]: Emotion perceived [%]:

Signals: fear interest uncertain Signals: pensiveness stub. uncertain

fear 89.1 6.5 4.3 pensiveness 93.8 0.0 6.3
j1 87.0 10.9 2.2 j1 27.1 58.3 14.6
j2 73.9 17.4 8.7 j2 29.2 58.3 12.5
j3 8.7 82.6 8.7 j3 4.2 87.5 8.3
interest 4.3 95.7 0.0 stubbornness 10.4 83.3 6.3

5th set:
Emotion perceived [%]:

Signals: disappointment fatigue uncertain

disappointment 95.8 2.1 2.1
j1 62.5 27.1 10.4
j2 58.3 29.2 12.5
j3 20.8 68.8 10.4
fatigue 52.1 43.8 4.2

In some cases (e.g. ’pensiveness’ and ’j1’ in the 4th set) weaker intensity of
the emotion time-mixed with another animation imposed the decrease of read-
ability of this emotion. In many cases a time-mixing animation with the same
weights applied (each ’j2’ in Table 3) creates readable animation (’calm’ in the
1st set). In some cases (e.g. ’determination’ in the 1st set, ’anger’ in the 2nd
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set, ’stubbornness’ in the 4th set) one emotion from the pair is mistakenly taken
for another. This indicates that even slight changes in the temporal structure
of the sequences result in a decreased readability of the given emotion. This
could be solved by adding other emotional elements to an animation (e.g., facial
movement, voice, or introducing exaggerated gestures whenever possible).

The results of choosing the emotion with a higher intensity, when both pre-
sented emotions seem to be the same are shown in Table 4. The gradation of the
emotion is verified in the following manner. In the generation stage, sequences
were marked as neg, j1, j2, j3, pos. If two sequences are for example from the
1st set, then neg means ’calm’ and pos - ’determination’. Let us assume that
the test participant viewed neg and j2, interpreted both as ’calm’, and chose
the second one as less intense. In such a case the answer is correct, because j2
is a result of time-mixing of temporal structures of ’calm’ with ’determination’
sequences, and therefore its intensity is weaker. When j1 and j2 are compared,
and then named by the test participant as ’determination’, j2 should be marked
as more intense, because its distance to the sequence (pos - ’determination’) in
the domain of the keyframe time positions is smaller then the distance of j1.

Table 4. Results of emotion gradation in a subjective test

[%] correct incorrect uncertain

1st set: 81.3 15.6 3.1
2nd set: 61.7 24.3 13.9
3rd set: 77.5 14.5 8.0
4th set: 94.8 2.1 3.1
5th set: 74.0 16.7 9.4

4.2 Data Mining

Although the number of generated sequences is very small, a knowledge base
is created and the rough set analysis is performed for its knowledge discov-
ery ability and rule calculation for further processing, especially for genera-
tion/classification of new animation sequences.

Analysis sets are presented in Table 5. Values in ’Case 1, 2, and 3’ are uti-
lized in three separate classification processes. The sequences were taken from
all five sets described in the previous sections: two sequences of each pair and
all transitions between them. Sequences j1 and j3 were labeled with a corre-
sponding emotion name (Case 1) and a positive/negative quality (Case 3). For
’pensiveness’, ’stubbornness’, and ’disappointment’ an alternative emotion name
was also assigned, similar in expression (Case 2). All j2 sequences were marked
as neutral, because the results of the subjective test show that viewers, as Table
3 presents, in many cases are not able to classify them to either class. Moreover,
the j2 sequences originating from an equal combination (time-mixing) of two
emotions are supposed to be neutral.
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Table 5. Analysis sets

Signal: Case 1 decision Case 2 decision Case 3 decision

1st set: calm calm calm positive
j1 calm calm positive
j3 determination determination negative
determination determination determination negative

2nd set: anger anger anger negative
j1 anger anger negative
j3 happiness happiness positive
happiness happiness happiness positive

3rd set: fear fear fear negative
j1 fear fear negative
j3 interest interest positive
interest interest interest positive

4th set: pensiveness pensiveness calm positive
j1 pensiveness calm positive
j3 stubbornness anger negative
stubbornness stubbornness anger negative

5th set: disappointment disappointment anger negative
j1 disappointment anger negative
j3 fatigue fatigue negative
fatigue fatigue fatigue negative

All sets: j2 neutral neutral neutral

Sequences were analyzed in terms of keyframes timing, as was described in
Section 3.2. Lengths of anticipation, main motion, overshoot, hold, and stop
phases were calculated, and fed along with ’Decision’ data to the rough set
analysis system.

For ’Case 1’, each of the ’Decision’ parameters is related only to two objects,
therefore classification seems to be irrelevant (Figure 7). For a proper classifica-
tion almost all parameters are required (anticipation, motion, overshoot, stop).
30 rules were generated and the classification achieved accuracy was 1.0. After
filtering the rules, i.e. removing ones with support equal 1, 10 rules have been
left, the coverage for ’calm’ and ’fatigue’ decreased to 0, but for other objects
the classification accuracy remained at 1.0 level.

For ’Case 2’ the ’pensiveness’ objects are treated as ’calm’, and the ’stubborn-
ness’ and ’disappointment’ – as ’anger’, because they are similar in expression.
The set of 28 rules was generated, with the classification accuracy of 1.0. After
filtration a set of 12 rules was left, the coverage for the ’fatigue’ objects de-
creased to 0, but for all other objects the classification accuracy remained at
1.0. Then, for ’Case 3’ all objects were partitioned into three classes - with a
positive, negative, and neutral emotional expression (Figure 9). ’Case 3’ is re-
lated to the meaning of gestures as identified by human. This means that each
decision from ’Case 1’ is now replaced with a label ’negative’, ’positive’ or ’neu-
tral’, e.g. both disappointment and fatigue are negative emotions, therefore label
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Fig. 7. Parameters of objects in ’Case 1’. Objects of classes are situated too close to
each other, and too many rules are needed to classify all of them, resulting in irrelevant
generalization.

Fig. 8. Parameters of objects in ’Case 2’. ’Pensiveness’ objects are now labeled as
’calm’, ’stubbornness’ and ’disappointment’ – as ’anger’, because they are similar in
expression. 28 rules allow for correct classification of all objects. 12 rules can classify
all except ’fatigue’.
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Fig. 9. Parameters of objects in ’Case 3’. All objects were labeled as ’negative’, ’posi-
tive’, and ’neutral’, referring to their more abstract expression. 13 rules are enough to
correctly classify all objects.

Table 6. Confusion matrix for ’Case 3’

Predicted:

negative positive neutral No.of obj. Accuracy Coverage

Actual: negative 11 0 0 12 1 0.917
positive 0 8 0 8 1 1
neutral 0 0 2 5 1 0.4

”negative” is assigned to them. A set of 13 rules was generated, with the clas-
sification accuracy and coverage equal 1.0. In that case 3 of 4 rules related to
’neutral’ class have support equal 1. Objects of that class are isolated from each
other, as can be seen in Figure 6, therefore generalization possibility is limited.
After the filtration, when rules with low support are removed, 9 rules have been
left, 4 describing a ’negative’ class, 4 describing a ’positive’ class, and 1 describing
’neutral’ class. The results of classification are presented in Table 6. Accuracy is
1.0 for each class, but one ’negative’ object and 3 ’neutral’ were omitted. These
rules, even with cover not equal 1.0, may be used for generalization purposes
and new object generation.

5 Conclusions

The results show that generating new animations by combining two animations
with different emotions assigned to them does not result in a readable animation.
A change in an original animation often creates confusion about the rendered
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emotion. It seems that there exists a narrow margin for the animation timing
modifications that assure no change in emotional features, yet it is still advisable
to create animations with as highest emotion intensity as possible. It should be
noted that a good readability of a motion achieved by its exaggeration is always
present in silent movies and animated movies made by hand. In computer ani-
mations this fact is often forgotten. Moreover, animating non-realistic characters
requires that the exaggerated motion is supplemented by a non-realistic facial
animation and a cartoonish-like style.

Presented results verify very important facts already known to animators.
Firstly, the results show that a temporal structure of an animated sequence
and the timing of its keyframes are important for expressing the emotion in an
animation. Secondly, motion is unreadable when its expression is too far from
the extreme intensity. On the other hand, a clear expressive gesticulation could
be achieved by a proper timing of keyframes. Other animation means such as
for example full body motion, facial expression, and modification of key poses
are also helpful when presenting similar emotions like fatigue and calm. These
additional cues enhance distinction between various emotional states, therefore
utilizing features related to gesticulation only, may not be sufficient.

Lack of the relation between amplitudes and emotions, presented in Section
3, gives possibilities to introduce many constrains to motion, like the exact spec-
ification of the target position for a grabbing, or walking sequence. In that case
amplitudes remain unchanged to satisfy constrains, but timing could vary, re-
sulting in different emotional expressions.

6 Future Experiments

As seen from the presented experiments most of the rules generated in the rough
set-based analysis are closely congruent to the traditional animation rules. Thus,
in future experiments these rules will be used in the expert system. The input
parameters fed to the system will consist of data obtained from the keyframes of a
simple animation created for an easy manipulation along with the description of
the desired emotional feature. Output parameters are the ones needed to create
a realistic motion sequence, i.e. the positions of keyframes and the lengths of
anticipation and overshoot phases.

For any simple animation, a set of modifications could be created, utilizing
differentiated values of emotional descriptions. This can be done using the ”com-
puting with words” approach and the fuzzy logic processing [24]. Rules generated
by the rough set analysis will be the basis of the system. In addition, the rough
set measure is to be applied as the weight in the fuzzy processing [10]. With
the output parameters from the fuzzy logic module, changes will be introduced
to animation, resulting in new keyframes, and the insertion of anticipation and
overshoot phases. For each parameter, membership functions should be defined,
correlated to discretization cuts acquired in the process of rough set rule genera-
tion (e.g. for animation parameters), or triangle membership functions covering
ranges from 0 to 100 (e.g. for animation features). Next for each membership
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functions appropriate linguistic description should be subjectively selected, and
used as its label. Additional tests will be needed to assign ranges between e.g.
’short’, ’medium’ and ’long’ anticipation.

It is planned to generate sequences with the same emotional features as the
ones prepared by the animator in the first stage, and verify their emotional
quality and naturalness. The results obtained may be utilized for derivation of
better rules, and this may increase the effectiveness of the system.

The outlined methodology can also be extended to animate other parts of
the human body, and this is planned as the future aim. The practical utility of
this research is to enhance computer-based animation features in order to create
animation more realistic and human-like.
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Abstract. Association rule algorithms often generate an excessive num-
ber of rules, many of which are not significant. It is difficult to determine
which rules are more useful, interesting and important. We introduce a
rough set based Rule Importance Measure to select the most important
rules. We use ROSETTA software to generate multiple reducts. Apriori
association rule algorithm is then applied to generate rule sets for each
data set based on each reduct. Some rules are generated more frequently
than the others among the total rule sets. We consider such rules as more
important. We define rule importance as the frequency of an association
rule generated across all the rule sets. Rule importance is different from
either rule interestingness measures or rule quality measures because of
their application tasks, the processes where the measures are applied and
the contents they measure. The experimental results from an artificial
data set, UCI machine learning datasets and an actual geriatric care
medical data set show that our method reduces the computational cost
for rule generation and provides an effective measure of how important
is a rule.

Keywords: Rough sets, rule importance measure, association rules.

1 Introduction

Rough sets theory was first presented by Pawlak in the 1980’s [1]. He introduced
an early application of rough sets theory to knowledge discovery systems, and
suggested that rough sets approach can be used to increase the likelihood of
correct predictions by identifying and removing redundant variables. Efforts into
applying rough sets theory to knowledge discovery in databases has focused on
decision making, data analysis, discovering and characterizing the inter-data
relationships, and discovering interesting patterns [2].

Although the rough sets approach is frequently used on attribute selection,
little research effort has been explored to apply this approach to association
rules generation. The main problem of association rule algorithm is that there
are usually too many rules generated, and it is difficult to process the large
amount of rules by hand. In the data preprocessing stage, redundant attributes
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can be found by a rough sets approach. By removing the redundant attributes,
association rules generation will be more efficient and more effective.

Klemettinen introduced the concept of rule templates [3]. Properly defined
rule templates can be helpful on generating desired association rules to be used
in decision making and collaborative recommender systems [4,5].

We discuss how the rough sets theory can help generating important associ-
ation rules. We propose a new rule importance measure based on rough sets to
evaluate the utilities of the association rules. Rules generated from reducts are
representative rules extracted from the data set; since a reduct is not unique,
rule sets generated from different reducts contain different sets of rules. However,
more important rules will appear in most of the rule sets; less important rules
will appear less frequently than those more important ones. The frequencies of
the rules can therefore represent the importance of the rules.

To test our hypothesis, we first use ROSETTA [6] rough sets toolkit to gener-
ate multiple reducts. We then use apriori association rules generation to generate
rule sets for each reduct set. We are interested in applying these rules for making
decisions. Therefore, the type of rules we are looking for are rules which have,
on the consequent part, the decision attributes, or items that can be of interest
for making decisions. Some rules are generated more frequently than the others
among the total rule sets. We consider such rules more important. We define
the rule importance measure according to the frequency of an association rule
among the rule sets. We will show by the experimental results that our method
provides diverse measures of how important are the rules, and at the same time
reduces the number of rules generated. This method can be applied in both
decision making and recommender system applications.

Our method is among the few attempts on applying rough sets theory to
association rules generation to improve the utility of an association rule. Rule
importance measure is different from either the rule interestingness measures or
the rule quality measures, which are the two well-known approaches on evaluat-
ing rules. The rule importance measure is different from the rule interestingness
measures. Most of the rule interestingness measures are used to evaluate classifi-
cation rules, and different people have different definition for “interestingness”.
Rule importance measure is applied to evaluate association rules. It is a straight-
forward and objective measure. Rule importance measure is different from rule
quality measure as well. Rule quality measure is used to evaluate the quality of an
classification rule. Whereas rule importance measure is applied from the process
of reduct generation to rule generation, and the rules evaluated are association
rules.

In our earlier work [7], we evaluated the rule importance measures on an arti-
ficial data set and a geriatric care data set. This paper extends the experiments
to include 13 data sets from UCI machine learning repository [8]. Detailed analy-
sis on the differences between rule importance measures and rule interestingness
measures, rule importance measures and rule quality measures are provided. We
also conduct comparison experiments on the different effects of ranking rules
between the rule importance measures and the rule interestingness measures.
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A number of interesting results from the experiments on the data sets are also
discussed.

We discuss related work on association rules algorithm and rough sets theory
on rule discovery in section 2. In section 3 we introduce the rule importance
measure. In section 4 we experiment the rule importance measure on an artificial
car data set, UCI data sets and a geriatric care data set. We summarize our
contributions and discuss the continuing work in section 5.

2 Related Work

2.1 Association Rules Algorithm

An association rule algorithm helps to find patterns which relate items from
transactions. For example, in market basket analysis, by analyzing transaction
records from the market, we could use association rule algorithms to discover
different shopping behaviors such as, when customers buy bread, they will prob-
ably buy milk. Association rules can then be used to express these kinds of
behaviors, thus helping to increase the number of items sold in the market by
arranging related items properly. An association rule [9] is a rule of the form
α → β, where α and β represent itemsets which do not share common items.
The association rule α → β holds in the transaction set L with confidence c,
c = |α∪β|/|α|, if c% of transactions in L that contain α also contain β. The rule
α → β has support s, s = |α ∪ β|/|L|, if s% of transactions in L contain α ∪ β.
Here, we call α antecedent, and β consequent. Confidence gives a ratio of the
number of transactions that the antecedent and the consequent appear together
to the number of transactions the antecedent appears. Support measures how
often the antecedent and the consequent appear together in the transaction set.

A well known problem for association rules generation is that too many rules
are generated, and it is difficult to determine manually which rules are more
useful, interesting and important. In our study of using rough sets theory to im-
prove the utility of association rules, we propose a new rule importance measure
to select the most appropriate rules. In addition to the experimentations on ar-
tificial data sets and UCI data sets, we also perform the experiments on a larger
data set, a geriatric care data set, to explore the application of the proposed
method.

2.2 Rough Sets Theory and Rule Discovery

Rough Sets was proposed to classify imprecise and incomplete information.
Reduct and core are two important concepts in rough sets theory. A reduct
is a subset of attributes that are sufficient to describe the decision attributes.
Finding all the reduct sets for a data set is a NP-hard problem [10]. Approxi-
mation algorithms are used to obtain the reduct set [11]. All reducts contain the
core. Core represents the most important information of the original data set.
The intersection of all the possible reducts is the core.
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We use ROSETTA GUI version 1.4.41 rough sets toolkit [6] for multiple
reducts generation. The reducts are obtained by the Genetic Algorithm and
Johnson’s Algorithm with the default option of full discernibility1 [12]. Hu et
al. [13] proposed a new core generation algorithm based on rough sets theory
and database operations. We use Hu’s algorithm to generate core attributes and
to examine the effect of core attributes on the generated rules. The algorithm is
shown in Algorithm 1.

Algorithm 1. Core Generating Algorithm[13]
input : Decision table T (C, D), C is the condition attributes set; D is the

decision attribute set.
output: Core, Core attributes set.

Core ← φ;
for each condition attribute A ∈ C do

if Card(Π(C − A + D)) = Card(Π(C − A)) then
Core = Core ∪ A;

end

end
return Core;

where C is the set of condition attributes, and D is the set of decision attributes.
Card denotes the count operation, and Π denotes the projection operation.

This algorithm is developed to consider the effect of each condition attribute
on the decision attribute. If the core attribute is removed from the decision table,
the rest of the attributes will bring different information to the decision making.
The algorithm takes advantage of efficient database operations such as count and
projection. Since the attributes of the core are contained in any reduct sets for
a data set, this algorithm also provides an evaluation to justify the correctness
of the reduct sets.

There have been contributions on applying rough sets theory to rule discovery.
Rules and decisions generated from the reducts are representative of the data
set’s knowledge. In [14], two modules were used in the association rules mining
procedure for supporting organizational knowledge management and decision
making. Self-Organizing Map was applied to cluster sale actions based on the
similarities in the characteristics of a given set of customer records. Rough sets
theory was used on each cluster to determine rules for association explanations.
Hassanien [15] used rough sets to find all the reducts of data that contain the
minimal subset of attributes associated with a class label for classification, and

1 For reduct generation, there are two options on discernibility provided by ROSETTA
software, which are full discernibility and object related discernibility. With the op-
tion of full discernibility, the software will produce a set of minimal attribute subsets
that can discern all the objects from each other. With object related discernibility,
the software produces reducts that can discern a certain object from all the other
objects.
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classified the data with reduced attributes. In sections 3.5 and 3.6 we discuss
other related research specific to the content of those sections.

Rough sets theory can help to determine whether there is redundant infor-
mation in the data and whether we can find the essential data needed for our
applications. We expect fewer rules will be generated due to fewer attributes.

3 Rule Importance Measures

3.1 Motivation

In medical diagnosis, a doctor requires a list of symptoms in order to make a
diagnosis. For different diseases, there are different patient symptoms to examine.
However, there are some routine exams that the doctor must perform for all the
patients, such as the age of the patient, the blood pressure, the body temperature
and so on. There are other symptoms that doctors may take into consideration,
such as whether the patients have difficulty walking, whether the patients have
bladder problems and so on. We would like to find the most important symptoms
for diagnoses. We know that the symptoms that are checked more frequently
are more important and essential for making diagnoses than those which are
considered less frequently. However, both the symptoms that require frequent
checking and the symptoms that are checked less frequently are included in the
list of checkup symptoms. In this way, the doctor will make a precise diagnose
based on all possible patient information.

3.2 Defining the Rule Importance Measure

The medical diagnosis process can be considered as a decision making process.
The symptoms can be considered as the condition attributes. The diagnosed dis-
eases can be considered as the decision attributes. Since not all symptoms need
to be known to make a diagnosis, the essential symptoms are considered as rep-
resentative. These symptoms can be selected by a reduct generation algorithm.

All the patient information can also be represented in a transaction data set,
with each patient’s record considered to be an item set. Association rule algo-
rithm can be applied on this transaction data set to generate rules, which have
condition attributes on the antecedent part and decision attributes on the con-
sequent part of the rules. Rules generated from different reduct sets can contain
different representative information. If only one reduct set is being considered
to generate rules, other important information might be omitted. Using multi-
ple reducts, some rules will be generated more frequently than other rules. We
consider the rules that are generated more frequently more important.

We propose a new measure, Rule Importance, to evaluate the importance of
association rules. A rule is defined to be important by the following definition.

Definition 1. If a rule is generated more frequently across different rule sets,
we say this rule is more important than rules generated less frequently across
those same rule sets.
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Rule importance measure is defined as follows,

Definition 2

Rule Importance Measure =

Number of times a rule appears in all
the generated rules from the reduct sets

Number of reduct sets
.

The definition of the rule importance measure can be elaborated by Eq. 1.
Let n be the number of reducts generated from the decision table T (C,D).
Let RuleSets be the n rule sets generated based on the n reducts. rulesetj ∈
RuleSets (1 ≤ j ≤ n) denotes individual rule sets containing rules generated
based on reducts. rulei (1 ≤ i ≤ m) denotes the individual rule from RuleSets.
RIMi represents the rule importance measure for the individual rule. Thus the
rule importance measures can be computed by the following

RIMi =
|{rulesetj ∈ RuleSets|rulei ∈ rulesetj}|

n
. (1)

The following example shows how to compute the rule importance measure.
We use the Iris [8] data set as an example. There are n = 4 reducts available for
rule generations. For each of the reducts, the rule sets generated based on the
reduct are shown in the following.

Reducts
{sepalLength, sepalW idth, petalLength}
{sepalW idth, petalLength, petalW idth}
{sepalLength, petalLength, petalW idth}
{sepalLength, sepalW idth, petalW idth}

Rule Sets
{sepalLength4.4 → setosa, sepalW idth2.9 → versicolor, petalLength1.9 → setosa, . . .}
{sepalW idth2.9 → versicolor, petalLength1.9 → setosa, petalW idth1.1 → versicolor, . . .}
{sepalLength4.4 → setosa, petalLength1.9 → setosa, petalW idth1.1 → versicolor, . . .}
{sepalLength4.4 → setosa, sepalW idth2.9 → versicolor, petalW idth1.1 → versicolor, . . .}

Rule sepalLength4.4 → setosa is generated across 3 rule sets, therefore the
rule importance is RIM = 3

4 = 75%. For rules sepalW idth2.9 → versicolor,
petalLength1.9 → setosa, petalW idth1.1 → versicolor, they are all generated
from 3 of the 4 rule sets, therefore their rule importance are 75%. The rule
importance for the rest rules can be found in Table 5.

3.3 Modeling the Rule Importance Measure

The general model on which we compute the rule importance measure is shown
in Fig. 1.

Firstly during the data preprocessing step, the inconsistent data instances
and the data instances containing missing attribute values are processed. Incon-
sistency exists in a decision table when two or more data instances contain the
same condition attribute values but different decision attribute values. These
data instances must be removed. We first sort the whole data set according to
the condition attributes, excluding the decision attributes. Then we select data
instances that contain the same condition attributes values, but different decision
attributes values. These data instances are inconsistent and they are removed
during this stage. Discretizations, such as equal frequency binning or entropy
algorithm [6], are also applied during this stage if necessary. Core attributes are
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Fig. 1. How to Compute Rule Importance

generated at the end of the data preprocessing stage. It is worthwhile to mention
that core generation requires no inconsistencies in the data set.

After data is preprocessed, multiple reducts are generated. Various algo-
rithms and rough set software provide multiple reducts generation. For example,
ROSETTA’s genetic algorithm generates multiple reducts; RSES [16] provides a
genetic algorithm for limited reducts generation (maximum 10 reducts), which is
appropriate in cases of larger data sets for only generating representative reducts.

After multiple reducts are generated, the condition attributes contained in
the reduct together with the decision attributes are used as the input data for
rule generation. Rule templates such as

〈Attribute1, Attribute2, . . . , Attributen〉 → 〈DecisionAttribute〉,

are applied in the rule generation step. Depending on different applications and
the expected results, rule templates for desired types of rules and for subsumed
rules are defined prior to the rule generation and are applied during the rule
generation process. Multiple rule sets are therefore generated after the rule gen-
erations for multiple reducts. Rule importance measures are further calculated
for each generated rule by counting the rule frequencies appearing across all the
rule sets. Rules with their individual importance measures are ranked according
to Eq. 1 and returned from the model.

In the evaluation stage of the model, core attributes play an important role for
evaluating these ranked rules. Rules with 100% importance contain all the core
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attributes. Rules that contain more core attributes are more important than rules
that contain fewer or none core attributes. Since core attributes are the most
representative among all the condition attributes, more important rules contain
these more representative attributes, which are the core attributes. Therefore by
checking for the presence of the core attributes in the rules, we can evaluate the
ranked rules with their rule importance.

3.4 Complexity Analysis

We analyze the time complexity for the proposed approach of generating impor-
tant rules. Suppose there are N data instances in the data set, and M attributes
for each data instance, N ′ is the number of distinct values in the discernibility
matrix, t is the number of multiple reducts for the data set, the time complexity
in the worst case is analyzed as follows. The time complexity for multiple reducts
generation is O(N ′2) [17]. The core generation takes O(NM) [13]. The apriori
association rules generation takes O(NM !) [9], therefore it takes O(tNM !) to
generate multiple rule sets for multiple reducts. The calculation of the rule im-
portance for the total rules k generated by the multiple rule sets takes O(k log k).
In general, t is much smaller than N , therefore the time complexity of our ap-
proach is bounded by O(N ′2 + NM + NM ! + k log k) ≈ O(NM !) in the worst
case.

3.5 How Is Rule Importance Different from Rule Interestingness

Rule generation often brings a large amount of rules to analyze. However, only
part of these rules are distinct, useful and interesting. How to select only useful,
interesting rules among all the available rules has drawn the attention of many
researchers. One of the approaches to help selecting rules is to rank the rules
by “rule interestingness measures”. Rules with higher measures are considered
more interesting. The rule interestingness measures, originated from a variety of
sources, have been widely used to extract interesting rules.

The rule importance measure is a new measure to rank the rules. It is different
from the rule interestingness measure in the following ways.

– Rule importance measure is used to evaluate association rules. Rule inter-
estingness measure applies to classification rules except that support and
confidence are two necessary parameters used in association rules genera-
tion, and they are considered as rule interestingness measures. Rule interest-
ingness measures usually cannot be used to measure association rules. The
input data for association rule generation is transaction data, and there is
usually no class label with the transaction data. However the class label is
required for calculating the rule interestingness measure.

– Rule importance measure is an objective measure. Rule interestingness mea-
sure can be either objective or subjective. In order to determine whether
a rule is “interesting” or not, different people may have different opinions.
Therefore “domain experts” are required to help make evaluations. However
the rule importance measure does not require human supervision. The rule
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importance measure uses the notion of a “reduct” from rough sets theory.
Recall that a reduct selects the maximally independent set of attributes from
a data set, that is, the reduct contains a set of attributes that are sufficient to
define all the concepts in the data. These attributes contained in the reduct
are considered to be more important. Rule importance measure is thus com-
puted across all the rule sets generated from all the possible reducts of a
data set. Since the reducts contain important attributes, rule sets generated
from the reducts can fully characterize the concepts of the data, rule impor-
tance thus provides an evaluation on how important these rules are. There
is no subjective matters involved in this measure. Although the generation
of all the reducts are NP-hard problem, ROSETTA provides the genetic
algorithm to generate multiple reducts objectively. However the rule inter-
estingness measure usually requires domain experts’ evaluation. Rules that
are considered interesting may not be important.

– Rule importance measure provides more direct and obvious measures. Rule
interestingness measures often involve selections according to the specific
applications. In [18] Hilderman showed that there is no rule interestingness
measure that can always perform better than the others in all applications.
Each individual rule interestingness measure is based on its selection bias
on the data. In order to determine what is the best interestingness measures
to use for a certain application data, all the possible measures have to be
compared to determine the best measure. But the rule importance measure
does not consider the type or applications of the data. It can be used directly
on the data from any application field.

– Rule importance measure reduces the amount of data required for rule gen-
eration by selecting only important attributes from the original data. The
number of rules generated is thus greatly reduced. Rule interestingness mea-
sure is applied after the rules are generated. Therefore it requires more com-
putational resources.

In summary, rule importance measure is straightforward and easy to compute;
it provides a direct and objective view of how important is a rule.

3.6 How Is Rule Importance Different from Rule Quality

The concept of rule quality measures was first proposed by Bruha [19]. The
motivation for exploring this measure is that decision rules are different with
different predicting abilities, different degrees to which people trust the rules
and so on. Measures evaluating these different characteristics should be used to
help people understand and use the rules more effectively. These measures have
been known as rule quality measures.

The rule quality measures are often applied in the post-pruning step during
the rule extraction procedure [20]. The measure is used to evaluate whether
the rules overfit the data. When removing an attribute-value pair, the quality
measure does not decrease in value, this pair is considered to be redundant and
will be pruned. In general, rule generation system uses rule quality measures to
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determine the stopping criteria for the rule generations and extract high quality
rules. In [21] twelve different rule quality measures were studied and compared
through the ELEM2 [20] system on their classification accuracies. The measures
include empirical measures, statistical measures and measures from information
theory.

The rule importance measure is different from the rule quality measure be-
cause of the following.

– The rule importance measure is used to evaluate how important is an associ-
ation rule. Rule quality measures explore classification tasks of data mining,
and are targeted towards improving the quality of decision rules. We cannot
use the rule quality measures to evaluate the association rules.

– The rule importance measure takes transaction data as input. There is no
class label from the transaction data. The measure evaluates how important
is an association rule without considering other information from the data.
Sometimes the transaction data can be processed by organizing the data into
the form of a decision table. In this situation, the rule importance measure
evaluates the relations between the condition attributes and the class. How-
ever, the rule quality measures are used to evaluate the relations between
the rules and the class.

– The rule importance measure takes input of multiple reducts and multiple
rule sets, then calculates the frequencies of each rule across multiple rule sets.
The measure is used throughout the rule generation process. The rule quality
measure is often used in the post-pruning process of the rule classification
system.

– The rule importance measure considers the representative attributes con-
tained in the reducts, and rule generations are based on the reducts. There-
fore, redundant attributes are removed before the rule generation, and the
number of rules generated are much fewer than rules generated from the
original data set. Thus the computation cost is lower. When the rule quality
measures are used to remove the low quality rules from the generated rules,
rule generation computation cost is greater than that of the rule importance
measure.

In summary, rule importance measure is different from rule quality measure
because of the differences between their application tasks, the processes where
the measures are applied and the contents they measure.

4 Experiments

In this section, we explain the experiments we conducted to generate rule im-
portance measures on an artificial car data set, UCI data sets and a geriatric
care data set.

The reduct is generated from ROSETTA GUI version 1.4.41. ROSETTA pro-
vides the following approximation algorithms for reducts generation: Johnson’s
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algorithm, Genetic algorithm, Exhaustive calculation and so on. Johnson’s algo-
rithm returns a single reduct. Genetic algorithm returns multiple reducts. Ex-
haustive calculation returns all possible reduct, although given a larger data set,
this algorithm takes longer time to generate reduct sets [12]. In our experiment,
we use the genetic algorithm to generate multiple reduct sets with the option of
full discernibility. The apriori algorithm [22] for large item sets generation and
rule generation is performed on Sun Fire V880, four 900Mhz UltraSPARC III
processors, with 8GB of main memory.

4.1 Specifying Rule Templates

Apriori association rules algorithm is used to generate rules. Because our interest
is to make decisions or recommendations based on the condition attributes,
we are looking for rules with only decision attributes on the consequent part.
Therefore, we specify the following 2 rule templates to extract rules we want as
shown by Template 2, and to subsume rules as shown by Template 3.

〈Attribute1, Attribute2, . . . , Attributen〉 → 〈DecisionAttribute〉 (2)

Template 2 specifies only decision attributes can be on the consequent part
of a rule, and Attribute1, Attribute2, . . . , Attributen lead to a decision of
DecisionAttribute, as shown by Template 2.

We specify the rules to be removed or subsumed using Template 3. For ex-
ample, given rule

〈Attribute1, Attribute2〉 → 〈DecisionAttribute〉 (3)

the following rules

〈Attribute1, Attribute2, Attribute3〉 → 〈DecisionAttribute〉 (4)

〈Attribute1, Attribute2, Attribute6〉 → 〈DecisionAttribute〉 (5)

can be removed because they are subsumed by Template 3.
We use the artificial car data set that is used in section 4.2 as an example

to further explain how to define proper templates. Since we are interested in
predicting the mileage of a car based on the model of a car, the number of
doors, the compression, the weight as well as other factors related to a car, we
would like to extract rules which have the decision attribute “mileage” on the
consequent part of the rules. Therefore we specify the template for desired rules
as shown in Eq. 6

〈model, cyl, . . . , weight〉 → 〈mileage〉. (6)

And if a rule

〈JapanCar, weight medium〉 → 〈mileage High〉 (7)

is generated, rules such as Eq. 8

〈JapanCar, trans manual, weight medium〉 → 〈mileage High〉 (8)

is subsumed, because this rule can be deduced by the previous rule.
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4.2 Experiments on Artificial Car Data Set

The first data set on which we experiment is an artificial data set about cars [23],
as shown in Table 1. It is used to decide the mileage of different cars. The

Table 1. Artificial Car Data Set

make model cyl door displace compress power trans weight Mileage

USA 6 2 Medium High High Auto Medium Medium
USA 6 4 Medium Medium Medium Manual Medium Medium
USA 4 2 Small High Medium Auto Medium Medium
USA 4 2 Medium Medium Medium Manual Medium Medium
USA 4 2 Medium Medium High Manual Medium Medium
USA 6 4 Medium Medium High Auto Medium Medium
USA 4 2 Medium Medium High Auto Medium Medium
USA 4 2 Medium High High Manual Light High
Japan 4 2 Small High Low Manual Light High
Japan 4 2 Medium Medium Medium Manual Medium High
Japan 4 2 Small High High Manual Medium High
Japan 4 2 Small Medium Low Manual Medium High
Japan 4 2 Small High Medium Manual Medium High
USA 4 2 Small High Medium Manual Medium High

condition attributes are make mode, cyl, door, displace, compress, power, trans,
weight. Mileage is the decision attribute. There are 14 instances. The data set
does not contain missing attribute values.

For the car data set, the core attributes are, make model and trans. ROSETTA
generates 4 reducts as shown in Table 2. Rule sets are generated based on these

Table 2. Reducts Generated by Genetic Algorithm for Artificial Car Data Set

No. Reduct Sets

1 {make model, compress, power, trans}
2 {make model, cyl, compress, trans}
3 {make model, displace, compress, trans}
4 {make model, cyl, door, displace, trans, weight}

4 reduct sets with support = 1%, confidence = 100%, and we also rank their
rule importance, as shown in Table 3.

Discussion. From Table 3, the first 2 rules have an importance of 100%. This
observation matches our experiences on cars. The auto transmission cars usually
have a lower mileage than the manual cars. Japanese cars are well known for us-
ing less gas and providing higher mileage. The rule “Door 4 → Mileage Medium”
has a lower importance because the number of doors belonging to a car does not
affect car mileage. We noticed that two rules with importance of 100% con-
tain core attributes and only core attributes to make a decision of mileage. For
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Table 3. The Rule Importance for the Artificial Car Data Set

No. Selected Rules Rule Importance

1 Trans Auto → Mileage Medium 100%
2 JapanCar → Mileage High 100%
3 USACar, Compress Medium → Mileage Medium 75%
4 Compress High, Trans Manual → Mileage High 75%
5 Displace Small, Trans Manual → Mileage High 50%
6 Cyl 6 → Mileage Medium 50%
7 USACar, Displace Medium, Weight Medium → Mileage Medium 25%
8 Power Low → Mileage High 25%
9 USACar, Power High → Mileage Medium 25%
10 Compress Medium, Power High → Mileage Medium 25%
11 Displace Small, Compress Medium → Mileage High 25%
12 Door 4 → Mileage Medium 25%
13 Weight Light → Mileage High 25%

the rest of the rules with importance less than 100%, the attributes on the left
hand side of a rule contains non-core attributes. This observation implies that
core attributes are important when evaluating the importance of the rules. Our
method of generating rules with reduct sets is efficient. There are 6, 327 rules
generated from the original data without using reducts or rule templates. 13
rules are generated using reducts and rule templates.

4.3 Experiments on UCI Data Sets

We experiment on selected UCI data sets [8] A through M described below.
In Table 4, we list for each data set, the name of the data set, the number of
condition attributes, the number of instances it contains; the number of reducts
returned by ROSETTA genetic algorithm, sample reducts; and core attributes
returned by Algorithm 1. In Table 5, we list the number of rules generated
using the original data set with certain support and confidence values without
applying the rule templates or the rule importance measure; the number of rules
generated from the reducts with the same support and confidence values with
the rule templates following the rule importance measure procedure shown in
Figure 1; and sample rules ranked by the rule importance measure.

A. Abalone Data. This data set is used to predict the age of abalone from physical
measurements. There are 4, 177 instances and 8 condition attributes in this data
set. There are no missing attribute values or inconsistent data instances in the
data set.

B. Breast Cancer Data. This data set contains 9 condition attributes and 286
instances. The date is used to diagnose the breast cancer disease. There are
missing attributes existing in the data set. We ignore all the missing attribute
values, and remove 9 records, we have 277 instances in the data. There are 12
inconsistent data records removed from the data as well.
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Table 4. UCI Data Sets

Data Condition No. of No. of Sample Core
Set Attributes Instances Reducts Reducts Attributes

Abalone 8 4, 177 16 {WholeWeight, ShuckedWeight, ShellWeight} Empty
{Height, WholeWeight, ShuckedWeight, VisceraWeight}

{Sex, Length, Height, WholeWeight, ShellWeight}
Breast 9 286 1 {age, menopause, tumor-size, deg-malig, age,
Cancer breast, breast-quad, irradiat} menopause,

tumor-size,
deg-malig,

breast,
breast-quad,

irradiat

Car 6 1, 728 1 {buying, maint, doors, persona, lug boot, safety} buying,
maint, doors,

persona,
lug boot,

safety

Glass 9 214 21 {RI, Al} {Na, Si} Empty
{RI, Na, Mg} {Na, Mg, K, Fe}

Heart 13 303 57 {age, chol, exang} Empty
{age, trestbps, chol}

{chol, thalach, slope, ca}
{sex, chol, oldpeak, ca, thal}

Iris 4 150 4 {sepalLength, sepalWidth, petalLength} Empty
{sepalLength, petal Length, petalWidth}
{sepalWidth, petalLength, petalWidth}
{sepalLength, sepalWidth, petalWidth}

Lympho- 18 148 147 {blockofaffere, hangesinnode, Empty
graphy changesinstru, specialforms,

dislocationof, noofnodesin}
Pendigits 16 7, 494 246 {C3, C6, C12, C13} Empty

{C3, C7, C10, C13, C14}
Pima 8 768 28 {blp, pedigree, age} Empty

Diabetes {times, glucose, pedigree}
{glucose, blp, insulin, age}

Spambase 57 4, 601 110 {will, report, you, credit, hp, george, meeting re, meeting,
re, edu, (, !, average, total} george, you,

{make, all, our, mail, report, free, you, credit, your !, total, edu
george, technology, meeting, re, edu, !, average, total}

Wine 13 178 66 {Flavanoids, Color} Empty
{Proanthocyanins, Color}

{MalicAcid, Alcalinity, Phenols}
Yeast 8 1, 484 4 {mcg, alm, mit, vac}, {mcg, gvh, mit, vac} vac

{mcg, gvh, alm, vac, nuc}
{gvh, alm, mit, vac, nuc}

Zoo 16 101 27 {eggs, aquatic, toothed, breathes, legs} aquatic, legs
{milk, aquatic, backbone, venomous, legs, catsize}
{hair, eggs, aquatic, predator, breathes, fins, legs}

C. Car Data. The car data set contains 6 condition attributes, and 1, 728 in-
stances. We apply association rules algorithm with rule templates, and there
are 9 rules generated. We first use core algorithm to generate core attributes,
and all the condition attributes are the core attributes. There is only one reduct
generated for this data set, and the reduct contains all the core attributes.

D. Glass Data. This data set is used for the study of classification of types of
glass by criminological investigation. At the scene of the crime, the glass left can
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Table 5. UCI Data Sets on Rule Importance Measures

Data set No. Rules with No. Rules Sample Rules by Rule Importance Measure
Original Data by RIM (% indicates the Rule Importance)

Abalone (s = 0.1%, 17 Viscera weight=0.1730 → Rings=9 [62.50%]
c = 100%) Infant, Height=0.12, Length=0.5 → Rings=8 [18.75%]

218 Female, Height=0.165, Diameter=0.48 → Rings=10 [12.50%]

Breast (s = 1%, 225 age30-39, tumor-size20-24, NoIrradiat
Cancer c = 100%) → no-recurrence-events [100%]

49, 574 age50-59, menopause premeno, degmalig 3
rightbreast → recurrence-events [100%]

tumor-size30-34, degmalig 3, breast-quad rightup
→ recurrence-events [100%]

Car (s = 1%, 9 BuyingPrice v-high, Maintainance v-high
c = 100%) → Decision unacceptable [100%]

341 BuyingPrice v-high, SizeLuggageBoot small, Safety med
→ Decision unacceptable [100%]

Glass (s = 0.5%, 129 Si=72.19 → Type 2 [44.44%]
c = 100%) Na=14.38 → Type 7 [33.33%]

9, 129 Na=13.48, Mg=3.74 → Type 1 [11.11%]

Heart (s = 1%, 237 maximum heart rate 179 → class0 [61.40%]
c = 100%) oldpeak 3.4 → class2 [47.37%]

71, 534 chol 234, restecg 2 → class0 [12.28%]
age65, female, thal normal → class0 [3.51%]

male, restingBloodPressure 130, no exercise induced angina,
no major vessels colored by flourosopy → class0 [1.75%]

Iris (s = 1%, 50 petalWidth1.1 → Iris-versicolor [75%]
c = 100%) sepalWidth2.9 → Iris-versicolor [75%]

352 petalLength1.9 → Iris-setosa [75%]
sepalLength5.4, sepalWidth3.4 → Iris-setosa [50%]

Lympho- (s = 10%, 43 changesinnode=lac.margin, bloflymphc=yes → metastases [51.02%]
graphy c = 100%) specialforms=vesicles, lymnodesenlar=4 → malign lymph [30.61%]

75, 731 blockofaffere=yes, bypass=no, earlyuptakein=no → metastases [7.48%]

Pendigits (s = 0.5%, 52 C3 0, C13 100 → Class 8 [31.30%]
c = 100%) C3 0, C9 100, C12 100 → Class 0 [6.10%]

389 C1 0, C12 50, C14 25 → Class 1 [0.41%]

Pima (s = 0.5%, 126 Diabetes pedigree function 0.237 → Tested negative [60.71%]
Diabetes c = 100%) Plasma glucose concentration 187 → Tested positive [53.57%]

429 Pregnant twice, insulin 0, age 25 → Tested negative [3.57%]

Spambase (s = 1%, 2, 190 you=0, re=0, !=0, average=1 → NotSpam [100%]
c = 100%) !=0, captialCharacterLongest=2 →NotSpam [67.27%]
37, 374, 343 george=0, re=0, edu=0, !=0, longest=3 → NotSpam[67.27]

Wine (s = 1%, 247 Nonflavanoid0.14 → class2 [21.21%]
c = 100%) Malic acid 1.64 → class1 [18.18%]

548 Nonflavanoid phenols0.53,
Alcalinity of ash 21.00 → class3 [10.61%]

color intensity5.40, Hue 1.25 → class1 [1.52%]

Yeast (s = 0.2%, 195 alm0.39, vac0.51 → ME3 [75%]
c = 100%) alm0.51, vac0.51, gvh0.48 → CTY [50%]

20, 864 mcg0.43, nuc0.33 → NUC [25%]
mcg0.46, vac0.51, nuc0.22 → CYT [25%]

Zoo (s = 10%, 31 aquatic, 6 legs → Type 6 [100%]
c = 100%) no eggs, 2 legs → Type 1 [66.67%]
680, 996 eggs, non breathes, non fin → Type 7 [7.41%]

be used as evidence. There are 214 instances and 9 condition attributes. There
are no missing attribute values or inconsistent data instances.

E. Heart Data. This data set is related to heart disease diagnosis. There are 4
databases in this data set,we use cleveland clinic foundationdata in our experiment
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because this is the only one well processed and usedby most researchers.This cleve-
land data contains 303 instances, and 13 condition attributes. We remove 6 missing
attribute values. There is no inconsistent data existing.

F. Iris Data. For Iris data set, there are 4 condition attributes, 150 instances.
There is no inconsistent data existing in the data. We first use core algorithm
to generate core attributes, but the result is empty. This means none of the
attributes is indispensable. There are 4 reducts generated. We apply association
rules algorithm with rule templates, and there are 50 rules generated.

G. Lymphography Data. The data set contains 148 instances and 18 condition
attributes. There are no missing attribute values in this data. We check that
there is no inconsistent data. The core is empty for this data set. 147 reducts
are generated from this data set.

H. Pendigits Data. This is a pen-based recognition of handwritten digits data
set. There are 10 classes with 16 condition attributes in the data, and 7, 494
training instances and 3, 498 testing instances are in the data. We use training
data to conduct our experiments. Each instance represents a hand-written digit
with 16 attributes, which are coordinates information. There is no reference on
the 16 condition attributes. We use Ci (1 ≤ i ≤ 16) to represent these attributes
in our experiments. There are no missing attribute values, or inconsistent data
in this data.

I. Pima Indians Diabetes Data. The data comes from all female patients who are
at least 21 years old of the pima Indian heritage. The data is used to diagnose
whether patients show signs of diabetes according to a list of criteria. There are
768 instances and 8 condition attributes in this data set. There are no missing
attribute values, and no inconsistent data.

J. Spambase Data. This data set originally contains 4, 601 instances and 57
condition attributes. It is used to classify spam and non-spam emails. Most
of the attributes indicate whether a certain word (such as, order, report) or
character (such as !, #) appears frequently in the emails. There are no missing
attribute values. There are 6 inconsistent data instances that are removed. After
removing redundant data instances as well, there are 4, 204 left in this data set.
There are 110 reducts and 7 core attributes generated from this data set. It is
interesting to notice that, the core attributes, which are essential to determine
whether an email is not a spam email, are, the word frequency of “george”,
“meeting”, ‘re”, “you”, “edu”, “!”, and the total number of capital letters in the
email. In addition, it is interesting to pay attention to the reducts as well. They
are important information on identifying the possible spam emails.2

K. Wine Recognition Data. This data is about using chemical analysis to deter-
mine the origin of wines. There are 13 attributes, 178 instances, and 3 classes in
the data. There are no missing attribute values or inconsistent data. The core is
empty.
2 The maximum number of items per itemset for apriori association rule generation is

6. Without this limitation, the rule generation gives an error of “out of memory”.
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Table 6. Geriatric Care Data Set

edulevel eyesight . . . trouble livealone cough hbp heart . . . studyage sex livedead

0.6364 0.25 . . . 0.00 0.00 0.00 0.00 0.00 . . . 73.00 1.00 0
0.7273 0.50 . . . 0.50 0.00 0.00 0.00 0.00 . . . 70.00 2.00 0
0.9091 0.25 . . . 0.00 0.00 0.00 1.00 1.00 . . . 76.00 1.00 0
0.5455 0.25 . . . 0.00 1.00 1.00 0.00 0.00 . . . 81.00 2.00 0
0.4545 0.25 . . . 0.00 1.00 0.00 1.00 0.00 . . . 86.00 2.00 0
0.2727 0.00 . . . 0.50 1.00 0.00 1.00 0.00 . . . 76.00 2.00 0
0.0000 0.25 . . . 0.00 0.00 0.00 0.00 1.00 . . . 76.00 1.00 0
0.8182 0.00 . . . 0.00 0.00 0.00 1.00 0.00 . . . 76.00 2.00 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L. Yeast Data. This data set is used to predict the cellular localization sites of
proteins. There are 1, 484 instances with 8 condition attributes in the data, and
no missing attribute values. We remove 31 redundant instances.

M. Zoo Data. This artificial data set contains 7 classes of animals, 17 condition
attributes, 101 data instances, and there are no missing attribute values in this
data set. Since the first condition attribute “animal name” is unique for each
instance, and we consider each instance a unique itemset, we do not consider
this attribute in our experiment. There are no inconsistent data in this data set.

4.4 Experiments on Geriatric Care Data Set

In this experiment, a sanitized geriatric care data set is used as our test data
set. Table 6 gives selected data records of this data set.

This data set is an actual data set from Dalhousie University Faculty of
Medicine to determine the survival status of a patient giving all the symptoms
he or she shows. The data set contains 8, 547 patient records with 44 symptoms
and their survival status. We use survival status as the decision attribute, and
the 44 symptoms of a patient as condition attributes, which includes education
level, the eyesight, the age of the patient at investigation and so on.3 There is no
missing value in this data set.

There are 12 inconsistent data entries in the medical data set. After removing
these instances, the data contains 8, 535 records.4

There are 14 core attributes generated for this data set. They are eartroub,
livealone, heart, hbp, eyetroub, hearing, sex, health, edulevel, chest, housewk, di-
abetes, dental, studyage. Table 7 shows selected reduct sets among the 86 reducts
generated by ROSETTA. All of these reducts contain the core attributes. For
each reduct set, association rules are generated with support = 30%, confidence
= 80%.5

3 Refer to [24] for details about this data set.
4 Notice from our previous experiments that core generation algorithm cannot return

correct core attributes when the data set contains inconsistent data entries.
5 Note that the value of support and confidence can be adjusted to generate as many

or as few rules as required.
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Table 7. Reduct Sets for the Geriatric Care Data Set after Preprocessing

No. Reduct Sets

1 {edulevel,eyesight,hearing,shopping,housewk,health,trouble,livealone,
cough,sneeze,hbp,heart,arthriti,eyetroub,eartroub,dental,
chest,kidney,diabetes,feet,nerves,skin,studyage,sex}

2 {edulevel,eyesight,hearing,phoneuse,meal,housewk,health,trouble,livealon,
cough,sneeze,hbp,heart,arthriti,evetroub,eartroub,dental,
chest,bladder,diabetes,feet,nerves,skin,studyage,sex}

. . . . . .
86 {edulevel,eyesight,hearing,shopping,meal,housewk,takemed,health,

trouble,livealone,cough,tired,sneeze,hbp,heart,stroke,arthriti,
eyetroub,eartroub,dental,chest,stomach,kidney,bladder,diabetes,
feet,fracture,studyage,sex}

Table 8. The Rule Importance for the Geriatric Care Data Set

No. Selected Rules Rule Importance

1 SeriousChestProblem → Dead 100%
2 SeriousHearingProblem, HavingDiabetes → Dead 100%
3 SeriousEarTrouble → Dead 100%
4 SeriousHeartProblem → Dead 100%
5 Livealone, HavingDiabetes, HighBloodPressure → Dead 100%

. . . . . . . . .
11 Livealone, HavingDiabetes, NerveProblem → Dead 95.35%
. . . . . . . . .
14 Livealone, OftenCough, HavingDiabetes → Dead 93.02%
. . . . . . . . .
217 SeriousHearingProblem, ProblemUsePhone → Dead 1.16%
218 TakeMedicineProblem, NerveProblem → Dead 1.16%

Discussion. There are 218 rules generated and ranked according to their rule
importance as shown in Table 8. We noticed there are 8 rules having impor-
tance of 100%. All attributes contained in these 8 rules are core attributes.
These 8 rules are more important when compared to other rules. For exam-
ple, consider rule No.5 and No.11. Rule No.11 has an importance measure of
95.35%. The difference between these two rules is that rule No.5 contains at-
tribute Livealone, HavingDiabetes, HighBloodPressure, and rule No.11 contains
the first 2 attributes, and instead of HighBloodPressure, NerveProblem is con-
sidered to decide whether the patient will survive. Generally high blood pressure
does affect people’s health condition more than nerve problem in combination
with the other 2 symptoms. Rule No.11 are more important than rule No.218 be-
cause in addition to the NerveProblem, whether a patient is able to take medicine
by himself or herself is not as fatal as whether he or she has diabetes, or lives
alone without care. With the same support and confidence, 2, 626, 392 rules are
generated from the original medical data set without considering reduct sets or
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Table 9. Rules generated by Johnson’s algorithm for the Geriatric Care Data Set

No. Rules Rule Importance
Corresponding to

Table 8

1 SeriousChestProblem → Dead 100%
2 SeriousHearingProblem, HavingDiabetes → Dead 100%
3 SeriousEarTrouble → Dead 100%
4 SeriousEyeTrouble → Dead 100%
5 SeriousHeartProblem → Dead 100%
6 Livealone, HavingDiabetes, HighBloodPressure → Dead 100%
7 VerySeriousHouseWorkProblem → Dead 100%
8 Sex 2 → Dead 100%
9 FeetProblem → Dead 96.51%
10 SeriousEyeSight → Dead 95.35%
11 Livealone, HavingDiabetes, NerveProblem → Dead 95.35%
12 TroublewithLife → Dead 81.40%
13 LostControlofBladder, HavingDiabetes → Dead 75.58%
14 Livealone, HighBloodPressure, LostControlofBladder → Dead 75.58%
15 HighBloodPressure, LostControlofBladder, NerveProblem→ Dead 72.09%
16 Livealone, LostControlofBladder, NerveProblem → Dead 72.09%

rule templates. Our method efficiently extracts important rules, and at the same
time provides a ranking for important rules.

We also performed experiments using Johnson’s reduct generation algorithm
[6] for rule generation based on one reduct with the minimum attributes. 16
rules are generated using this reduct [24] as shown in Table 9. The 8 rules with
100% importance in Table 8 are also generated. Although the reduct generated
by Johnson’s algorithm can provide all the 100% importance rules, the result
does not cover other important rules. For example, rule No.14 in Table 8 implies
that it is important for the doctors to pay attention to some patient who lives
alone, coughs often and also has diabetes. This information is not included in
Table 9 by just considering the rules generated by only one reduct.

The experimental results show that considering multiple reducts gives us more
diverse view of the data set, the rule importance measure provides a ranking of
how important is a rule.

4.5 Comparison Experiments

Confidence is one of the interestingness measures. Given the antecedent of rule
existing in the data set, the confidence measures the probabilities of both the
antecedent and the consequent of the rule appear together in the data set. The
higher the probability, the more interesting the rule is considered to be. Confi-
dence is usually used to measure how frequently the items appear together in
the data set, and how much associated is one item to the other item(s). Thus,
if people are interested in how significant is a rule instead of how often the
items contained in the rule appear together, confidence measure cannot provide
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such knowledge. Rule importance measure takes the semantic meaning of the
data into consideration, and evaluates the significance of a rule through how
significant the attributes are.

In order to show that rule importance measure is different from other existing
measures on ranking the rules, e.g., confidence, we compare effects on ranking
the rules from both the rule importance and confidence measures.

We take the geriatric care data set as an example. The rules ranked with their
importance are shown in Table 8. These rules are generated with the minimum
confidence of 80%. We list the rules ranked by their confidence in Table 10.
From Table 10 we can see that what the confidence measure considers to be

Table 10. Rules Ranked with Confidence for the Geriatric Care Data Set

No. Selected Rules Confidence Rule Importance

1 TroublewithLife → Dead 85.87% 81.40%
2 VerySeriousHouseWorkProblem → Dead 84.77% 100%
3 TroublewithShopping → Dead 83.03% 41.86%
4 TroublewithGetPlacesoutofWalkingDistance → Dead 81.86% 16.28%
5 SeriousHeartProblem → Dead 81.66% 100%
6 TroublePrepareMeal → Dead 81.51% 69.77%
7 EyeTrouble → Dead 80.91% 95.35%
8 Sex 2 → Dead 80.87% 100%
9 SeriousEarTrouble → Dead 80.48% 100%
10 SeriousFeetProblem → Dead 80.83% 96.51%
11 TakeMedicineProblem, KidneyProblem → Dead 80.64% 13.95%
. . . . . . . . . . . .
21 SeriousEyeTrouble → Dead 80.48% 100%
. . . . . . . . . . . .
36 Livealone, OftenCough, HavingDiabetes → Dead 80.40% 93.02%
37 TakeMedicineProblem, LostControlBladder → Dead 80.39% 16.28%
38 SeriousHearingProblem, HavingDiabetes → Dead 80.39% 100%
. . . . . . . . . . . .
125 SeriousHearingProblem, ProblemUsePhone → Dead 80.13% 1.16%
. . . . . . . . . . . .
154 SeriousChestProblem → Dead 80.07% 100%
. . . . . . . . . . . .
169 Livealone, HavingDiabetes, HighBloodPressure → Dead 80.05% 100%
. . . . . . . . . . . .
177 Livealone, HavingDiabetes, NerveProblem → Dead 80.04% 95.35%
. . . . . . . . . . . .
218 TakeMedicineProblem, NerveProblem → Dead 80.00% 1.16%

interesting are not always important. For example, rule No. 4 and No. 5 have
similar confidence, but as we all know, whether a patient has serious heart prob-
lem is more important than whether he or she can walk for a certain distance.
When a patient has a heart problem, he or she normally would have trouble
walking for long distances. The rules that are considered not very interesting
by the confidence measure may be important. As an example, rule No. 177 has
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a lower confidence, and therefore is not considered to be interesting. However,
whether the patient has diabetes takes an important part in diagnosing diseases,
this knowledge cannot be ignored. In comparison, rule importance ranks rules
containing important attribute(s) to be more significant. In certain applications,
such as medical diagnoses, when the focus of knowledge discovery is on the im-
portant symptoms, rule importance measure can indeed help facilitate evaluating
important knowledge.

5 Concluding Remarks

We introduce a rule importance measure which is an automatic and objective ap-
proach to extract and rank important rules. This measure is applied throughout
the rule generation process. The core attributes should be taken into considera-
tion while choosing important and useful rules. By considering as many reduct
sets as possible, we try to cover all representative subsets of the original data
set. This measure can also be used jointly with other measures to facilitate the
evaluation of the association rules.

Rough sets theory can help with selecting representative attributes from a
given data set. By removing redundant attributes, only reserving representative
attributes, we achieve representative rules, at the same time the computation
cost is lower comparing to the rule generation with all the attributes.

During our experiments on actual data sets, we observed some interesting
results. For the UCI breast cancer data set, we extract a rule with 100% im-
portance that if the patient is in the age of 50 to 59, premeno menopause, with
degmalig of 3 and the tumor is in the right breast, then the breast cancer belongs
to a recurrence event. For pima diabetes data set, it is not necessary to consider
the following rule as important that if a patient has been pregnanted twice, the
2-hour serum insulin is 0, and she’s 25 years old, her chance of getting diabetes
is negative. For the spambase data set, one of the most important rules is when
the word frequencies for “you”, “re” and “!” are 0 in an email, and the average
length of uninterrupted sequences of capital letters is 1, then this email is not
considered possible to be a spam email. For the geriatric care data set, we found
that given the same condition of a patient living alone and having lost control
of bladder, high blood pressure brings more a severe effect to the patient than
nerve problems.

Rule importance measures differentiate rules by indicating which rules are
more important than other rules. Rule importance measures can be used in a
variety of applications such as medical diagnosis, construction of spam filters,
wine or glass recognitions and so on.

We observed a limitation that when there is only one reduct for a data set,
such as the UCI Car data set or the Breast Cancer data set, rule importance
measure returns all the rules with the importance of 100%. The result is the
same as rule generation for the data set itself. So, for a given data set, if there is
only one reduct, the rule importance measure does not differentiate the generated
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rules. More objective measures have to be explored to be combined together to
further differentiate the rules.
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Abstract. This paper proposes a rough set method to extract decision
rules from human evaluation data with much ambiguity such as sense
and feeling. To handle totally ambiguous and probabilistic human eval-
uation data, we propose an extended decision table and a probabilistic
set approximation based on a new definition of information gain. Fur-
thermore, for our application, we propose a two-stage method to extract
probabilistic if-then rules simply using decision functions of approximate
regions. Finally, we implemented the computer program of our proposed
rough set method and applied it to Kansei Engineering of coffee taste
design and examined the effectiveness of the proposed method. The re-
sult shows that our proposed rough set method is definitely applicable
to human evaluation data.

Keywords: Variable precision Bayesian rough set model, ambiguity, ex-
traction of decision rules, human evaluation data, Kansei Engineering,
rough sets.

1 Introduction

The original rough sets approach is restricted to the case where there exist fully
correct and certain classifications derived from a decision table. Unfortunately,
many cases exist where there is no lower approximation of a classification. Fur-
thermore, if there are only very few elements in a lower approximation of some
decision set, the if -then rules extracted from these few elements might be un-
reliable. Thus, it is necessary to handle a huge decision table. Consequently, the
combination of rough sets approaches and probability theory can be found in
many research papers [15,17,18,19,20,21,23,24,25].

On the other hand, we have applied rough set methods to Kansei Engi-
neering (KE) problems [8,9,10]. Kansei Engineering is defined as the ’technology
to translate human needs to product elements’[5]. Its aim is to develop customer-
oriented products by using relational rules embodying design attributes of
products and human evaluation data such as sensory perceptions and feelings.
However, these human-product relational rules are seldom used by design ex-
perts, since their structure is very complicated. Recently, it has been shown that
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rough set approaches are very effective to extract human decision rules in KE
[4,5]. However, since human evaluation data involve considerable ambiguity of
the decision classes, it has been very difficult to derive effective decision rules
from such human evaluation data. If we consider the properties of the human
evaluation data such as ambiguity and non-linearity, we have to construct a rough
set method that can treat the case where there is no lower approximation of a
classification, and the case where the decision classes embody with considerable
ambiguity. In such situations, we directed our attention to the variable precision
rough set model (VPRS)[23], Bayesian rough set model (BRS)[18,19,20] and
variable precision Bayesian rough set model (VPBRS)[17] because these models
are much suitable for dealing with practical human evaluation data involving
ambiguity or inconsistency.

Accordingly, in this paper, we propose a modified VPBRS suitable for ana-
lyzing human evaluation data with much ambiguity[11,12]. We defined a new
information gain relative to equivalent classes suitable for handling totally am-
biguous and probabilistic properties of human evaluation data. Moreover, for
our application, we propose a two-stage method to extract probabilistic deci-
sion rules simply from probabilistic decision tables using decision functions of
approximated classes. Next, we have designed and implemented a computer pro-
gram for our rough set method, and applied the proposed rough set method to
real life coffee taste design in a coffee company. Its aim is to discover effective
decision rules and to develop coffee manufacturing conditions to produce a new
coffee taste fitted to customers based on the extracted decision rules[13]. The
results show that our proposed rough set method is more applicable to human
evaluation data in KE, and it extracts ’interesting’ decision rules to develop new
products fitted to human sense or feeling.

The rest of the paper is organized as follows. In Section 2, Kansei Engineering
and its relation with rough set is described in viewpoints of practical applica-
tions of rough sets. Preliminaries and notations to describe an extended decision
table for human evaluation data are introduced in Section 3. In Section 4, con-
cepts of information gain and probabilistic approximations to properly handle
human evaluation data are introduced. In Section 5, for our applications, we
present a two-stage method to simply extract probabilistic decision rules using
decision functions from an approximated decision table. We show an application
of our rough set method to practices of Kansei Engineering in Section 6. Finally,
Section 7 presents conclusions and our future work.

2 Rough Sets and Kansei Engineering

The trend of a new product development emphasizes consumer orientation,
namely, consumer needs and feeling are recognized as very important and in-
valuable in a product development for manufacturers. Kansei engineering was
founded by Nagamachi, M., one of the authors, at Hiroshima University around
30 years ago [5,6,7] and it aims to implement customers’ feelings and needs in new
product function and design. The term ’kansei’ is a Japanese adjective, which
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implies the customer’s psychological feeling when he/she considers (evaluates)
a newly coming product or situation. You are much interested in car design.
When you take look at the new car picture, you will think of it as ’very fast
dash’ or ’good outside design’ and others. These feelings are the kansei. Though
the kansei has vague feature, it is quantified using psychological and physiologi-
cal measurement. And then the qualified data are able to be transferred to the
design domain and we are able to create a new product design using the design
specifications. That is, kansei engineering is defined as ’‘translation technology
of kansei characteristics into design specifications”. If we have the design spec-
ifications, we can design a new product fit to a customer’s feeling. Most of the
kansei products have sold very well in the market, because it was based on the
customers’ needs.

We have many examples of the kansei products developed by the kansei engi-
neering so far in industries of automobile, construction machine, home electric
appliance, housing, costume, cosmetics and others. The sports car ’Miata (MX
5)’ made by Mazda is very well known in the world as one developed using the
kansei engineering. Its core technology is to identify the relationships between
the elements of product and human kansei, and then to translate human kansei
into design elements using those relationships.

The main procedure of KE consists of the following three steps[5].

Step 1: human evaluation experiment to product sets.
Step 2: identification of the relationships between product attributes and its

human evaluation such as sense or feeling.
Step 3: development and design of new product based on the extracted deci-

sion rules between human kansei and product attributes.

At Step 1, some dozens of persons evaluate product sets by using psychological
measurement scales of sense or feeling words such as ’attractive’, ’good design’,
’functional’ and so on, which are supposed to be significant to develop a new
product.

At Step 2, rough sets approaches are especially able to contribute to extracting
useful decision rules. Human evaluation processes include the cognition of inter-
actions between elements of a object and the ambiguity of decisions arising from
individual differences. For example, when you recognize a human face, at the
beginning, you percept the interactions between eyes, mouth, face shape and so
on, and then you judge if it is man or women according to your own recognition
and experiences. Similarly, when you percept a product, the same process arises.

These examples indicate that there exist the interactions between the elements
of a object to recognize, and the ambiguity of decision in human evaluation
processes. Unfortunately, the relations between product attributes and its human
evaluation are few known since the structure is very complicated.

Many different statistical analyses are used to find the solution of design spec-
ification, but there is such big problem that the kansei has not primarily linear
characteristics, and that applications of statistics to find the relationship be-
tween the kansei and design specifications are problematic. Methods of computer
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science are utilized in the kansei engineering as well. Therefore, Fuzzy Logic and
Rough Sets are very useful to find the solution related the data with non-linear
characteristics.

Since rough sets are excellent in the analysis of interactions from uncertain
data and its results are shown in the form of if-then decision rule which is under-
standable easily for human, rough sets may become a powerful tool to identify
relations between human evaluation and design attributes. In the situation, the
development of effective rough set method is becoming one of challenging tasks
in KE[6]. At Step 3, the extracted decision rules would be useful to translate
human sense or feeling to design elements of new product.

However, the original rough sets approach is restricted to the case where
there exist the fully correct and certain classifications derived from the decision
table. Unfortunately, in KE applications, we have many cases where there is no
lower approximation of a classification. Therefore, we have developed a rough
set method based on Bayesian rough set (BRS) and variable precision Bayesian
rough set (VPBRS) proposed by Ślȩzak, D. and Ziarko, W.[17,18,19,20], and
implemented its computer program so as to suitably handle human evaluation
data, and we have applied it to the extraction of effective decision rules for new
product design more fitted to human sense or feeling. The extracted decision
rules will be very useful because these human-product relational rules are hardly
known even for design experts since the structure is very complicated.

3 Preliminaries and Notations

Let us start with a simple example of human evaluation data with respect to
products shown in Table 1 where a set of products, a set of design attributes
(conditional attributes) of products and human evaluation (decision attribute)
to product are denoted as E = {E1,E2,E3,E4}, A = {a1, a2, a3} and d, respec-
tively. An evaluation event of j − th evaluator to i − th product is denoted as
xji. There are four products and five human evaluators. Ei are equivalent classes
because the same product has the same attribute values.

Any attribute of A has a domain of its design attribute values, Va1 = {0, 1},
Va2 = {0, 1} and Va3 = {0, 1}, which may be color, shape and size of products.
Human evaluation decision d has also a domain of its evaluation values Vd =
{0, 1, 2}, which may be ’very good’, ’good’ or ’no good’.

A set of decision classes is D = {D0, D1, D2 } where Dj = { x | d(x) = j }, j =
0, 1, 2. The extended decision table is similar to one in [16]. It should be noted that
the same product has the same attributes, but the decisions are different because
the decisions are dependent on the cognition of each evaluator. Therefore, there
is no lower approximation to any decision class. It is should be noticed that the
ambiguity will arise in the table even when we use more conditional attributes.

Moreover, decision classes of human evaluation are assumed to occur with
different prior probabilities. Thus, we have to define an approximate lower ap-
proximation of decision classes by introducing the information gain to positive
region. Table 1 will be used to illustrate our approach with a numerical example.
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Table 1. An example of human evaluation data

Product ( E ) Event (U ) a1 a2 a3 Evaluation ( d )

x11 0 1 1 0
x21 0 1 1 0

E1 x31 0 1 1 0
x41 0 1 1 1
x51 0 1 1 1

x12 1 0 1 1
x22 1 0 1 1

E2 x32 1 0 1 1
x42 1 0 1 0
x52 1 0 1 2

x13 0 1 0 1
x23 0 1 0 2

E3 x33 0 1 0 2
x43 0 1 0 2
x53 0 1 0 2

x14 1 1 1 0
x24 1 1 1 0

E4 x34 1 1 1 0
x44 1 1 1 0
x54 1 1 1 1

Formally, we have U = {x11, . . . , xji, . . . , xmn} for the universe denoted as
a set of events of n evaluators to m products, A = {a1, . . . , ak, . . . , ap} for p
conditional attributes, U/A = {E1, . . . ,Ei, . . . ,Em} for m products, and D =
{D1, . . . , Dj , . . . , Dr} for r decision classes where Dj = { x | d(x) = j }. Any
conditional attribute ak is a mapping function ak (x) = vk and has a set of
its values Vak. A decision attribute d is a mapping function d (x) = vd and
has Vd.

These evaluation data include at least two important probabilistic aspects.
One is the probability of decision dependent on the conditional attributes of
products and the other is the prior probability of decision class. Such probabili-
ties are experientially acceptable in human evaluation data. These probabilities
are well known as the conditional and prior probability, respectively. According
to many literatures such as [15,17,18,19,21], the following probabilities can be
defined:

P (Dj |Ei) =
card(Dj ∩ Ei )

card(Ei )
. ( the conditional probability )

P (Dj) =
card(Dj )
card(U )

. ( the prior probability)

In the example of Table 1, we have Table 2.
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Table 2. The prior and conditional probabilities

P (D0)=0.40 P (D0|E1)=0.6 P (D0|E2)=0.2 P (D0|E3)=0.0 P (D0|E4)=0.8

P (D1)=0.35 P (D1|E1)=0.4 P (D1|E2)=0.6 P (D1|E3)=0.2 P (D1|E4)=0.2

P (D2)=0.25 P (D2|E1)=0.0 P (D2|E2)=0.2 P (D2|E3)=0.8 P (D2|E4)=0.0

4 Rough Sets Approach Based on Information Gain

According to the parameterized version of Bayesian Rough Set (BRS) model
[17,18,19,20], let us consider the difference between probabilities P (Dj) and
P (Dj |Ei) as a kind of information gain in the case that P (Dj |Ei) > P (Dj).
We define the information gain denoted as

g(i, j) =

{
1 − P (Dj)

P (Dj |Ei)
if P (Dj |Ei) �= 0

0 if P (Dj |Ei) = 0
. (1)

which means that the larger the conditional probability compared with the prior
probability is, the larger the information gain is. Since the information gain
enables to evaluate the influence of the set of conditional attributes on decision
class relative to its prior probability, our approach based on the information gain
is applicable to the human evaluation data with different prior probabilities.

The similar concept to (1) is used in market basket analysis [3] and the mean-
ing of (1) would be clear. This information gain would be acceptable with the
following numerical cases:

1) P (Dj) = 0.6 and P (Dj |Ei) = 0.8 : g(i, j) = 0.25,
2) P (Dj) = 0.2 and P (Dj |Ei) = 0.4 : g(i, j) = 0.50.

It follows from the above that the case 2) is more informative than the case
1), although the differences between P (Dj) and P (Dj |Ei) are the same. This
fact can be acceptable for everyone. The definition of information gain by (1)
corresponds with our intuition that the large increment of P (Dj |Ei) being more
than P (Dj) should take larger information gain when P (Dj) is low, while the
same increment of P (Dj |Ei) should take smaller information gain when P (Dj)
is high. The similar index is considered in [17], which can be written as

g∗(i, j) =
P (Dj |Ei) − P (Dj)

1 − P (Dj)
. (2)

Thus, using (2), we have g∗(i, j) = 0.5 in the case 1) and g∗(i, j) = 0.25 in
the case 2). This result is contrary to one obtained by our information gain.

Let us define the positive region by using the information gain with parameter
β as
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POSβ(Dj) =
⋃ {

Ei

∣∣ g(i, j) > β
}

=
⋃ {

Ei

∣∣ P (Dj |Ei) >
P (Dj)
1 − β

}
.

(3)

which means the region that Ei would belong possibly to Dj with β. It should
be noted that 0 ≤ β ≤ 1 − P (Dj). In other words, β should be less than the
residual of the prior probability P (Dj).

The coefficient 1
1−β is related to the parameter with regard to strength of

the evidence {Ei} given decision Dj . For example, if β=0, we have evidences
Ei such that P (Dj |Ei) > P (Dj). If β=0.5, we have evidences {Ei} such that
P (Dj |Ei) > 2P (Dj). Thus, the value of β can be regarded as strength of the
evidences Ei given decision Dj .

Using the duality of rough sets NEGβ(Dj) = POSβ(¬Dj), the negative re-
gion can be automatically defined as

NEGβ(Dj) =
⋃ {

Ei

∣∣ P (Dj |Ei) <
P (Dj) − β

1 − β

}
. (4)

which means the region that Ei would not belong possibly toDjwithβ.
It should be noticed that NEGβ(Dj) is defined under the condition P (Dj|Ei)

< P (Dj) and that 0 ≤ β ≤ P (Dj). From P (Dj |Ei) <
P (Dj)−β

1−β , we can derive

P (¬Dj |Ei) >
P (¬Dj)

1−β . Then, since 0 ≤ P (Dj)−β
1−β ≤ P (Dj) ≤ P (Dj)

1−β , we have the
following boundary region:

BNDβ(Dj) =
⋃ {

Ei

∣∣ P (Dj |Ei) ∈
[
P (Dj) − β

1 − β
,
P (Dj)
1 − β

]}
. (5)

which means the region that Ei would not belong possibly to neither of Dj or
¬Djwith β.

The positive region means that the evidences{Ei} show {Ei} → Dj being
highly possible. The negative region means that the evidences{Ei} show {Ei} →
¬Dj . Then, the boundary region means that we cannot decide the above two
regions.

As the value of β increases up to min(1 − P (Dj), P (Dj)), the positive and
negative regions decrease, and boundary region increases. Furthermore, as the
value of β increases, the information associated with Ei is strongly relevant
to Dj .

It should be noted that β is similar to 1−ε in [17]. If we take β = 0, POSβ(Dj),
NEGβ(Dj) and BNDβ(Dj) are characterized by P (Dj |Ei) > P (Dj), P (Dj|Ei)
< P (Dj), and P (Dj |Ei) = P (Dj), respectively. If we take β = 1 − P (Dj),
POSβ(Dj) and NEGβ(Dj) are characterized by P (Dj |Ei) > 1 and P (Dj |Ei) <
P (Dj)−P (¬Dj)

P (Dj) , respectively. Thus, BNDβ(Dj) is characterized by P (Dj)−P (¬Dj)
P (Dj)

≥ P (Dj|Ei) ≥ 1. And also, if we take β = P (Dj), NEGβ(Dj) and POSβ(Dj)
are characterized by P (Dj |Ei) < 0 and P (Dj |Ei) >

P (Dj)
P (¬Dj)

, respectively. Thus,

BNDβ(Dj) is characterized by 0 ≤ P (Dj |Ei) ≤ P (Dj)
P (¬Dj) . It should be noticed
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that the properties of POSβ(Dj) and NEGβ(Dj) satisfy the minimal conditions
P (Dj |Ei) > P (Dj) and P (¬Dj |Ei) < P (¬Dj) of the Bayesian confirmation,
respectively[1,2,19,20].

Moreover, we can define:

UPP β(Dj) = POSβ(Dj) ∪BNDβ(Dj)

=
⋃ {

Ei

∣∣ P (Dj|Ei) ≥
P (Dj) − β

1 − β

}
.

(6)

which means the possible region except for the negative region.
This index(6) might be important in real applications in the sense that we need

more samples without {Ei} → ¬Dj to find effective rules from much ambiguous
data because of UPP β(Dj) ⊇ POSβ(Dj). Lastly it follows that

U = POSβ(Dj) ∪NEGβ(Dj) ∪BNDβ(Dj) . (7)

We can have decision rules with different certainties by changing the value
of β. It should be noticed that there are orthogonal partitions with respect to
decision classes D = {D1, . . . , Dr}.

In the example of Table 1, assuming β = 0.2, we have:

POS0.2(D0) =
⋃{

Ei

∣∣ P (D0|Ei) ≥
P (D0)

0.8
= 0.5

}
= E1 ∪ E4 ,

NEG0.2(D0) =
⋃{

Ei

∣∣ P (D0|Ei) ≤ 0.25
}

= E2 ∪ E3 ,

BND0.2(D0) = ∅ ,

UPP 0.2(D0) = E1 ∪E4 .

5 Extraction Method of Decision Rules from
Approximate Regions

We presents here a two-stage method to simply extract uncertain probabilistic
decision rule. The first stage extracts certain decision rules by using relative
decision functions of approximation region classes. Then the second stage gives
rule evaluation factors to the extracted rules. It is similar to the one proposed
in the framework of the variable precision rough set model[25].

First Stage. Since approximate regions are exclusive each other from (7). we
have a consistent decision table with respect to each approximate region. Thus,
we can construct a decision matrix relative to each approximate class. A decision
matrix with respect to POSβ(Dj) can be described as Table 3.

Any element of the decision matrix is defined:

Mβ
ij(Dj) =

{∨
ak = vik

∣∣ ak(Ei) �= ak(Ej), ∀ak ∈ A
}

, (8)

where ∨ ak = vik is a disjunction of attribute elements to discern Ei and Ej .
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Table 3. A decision matrix with respect to approximate regions

NEGβ(Dj) BNDβ(Dj)

EN1 . . . Ej EB1 . . . EBn

EP1

...
...

...

POSβ(Dj) Ei . . . . . . Mβ
ij(Dj)

...
EPm

From POSβ(Dj), we can derive minimal decision rules in the form of if
condition then decision using the following decision function.

POSβ−rule(Dj) =
∨

Ei∈POSβ(Dj)

∧
Ej /∈POSβ(Dj)

Mβ
ij(Dj) . (9)

Similarly, we can derive rules from NEGβ(Dj) or BNDβ(Dj).
From UPP β(Dj), we can also derive minimal possible decision rules using the

following decision function.

UPP β−rule(Dj) =
∨

Ei∈UPP β(Dj)

∧
Ej /∈UPP β(Dj)

Mβ
ij(Dj) . (10)

In the example of Table 1, we have the decision matrix with respect to
POS0.2(D0) shown in Table 4.

Table 4. The decision matrix with respect to POS0.2(D0)

NEG0.2(D0)

E2 E3

POS0.2(D0)

E1 a1 = 0 ∨ a2 = 1 a3=1

E4 a2=1 a1 = 1 ∨ a3 = 1

From Table 4, we can obtain the following rules.

r1 : if a1 = 0 and a3 = 1, then d = 0 {E1}
r2 : if a1 = 1 and a2 = 1, then d = 0 {E4}
r3 : if a2 = 1 and a3 = 1, then d = 0 {E1,E4}

(11)
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The symbols at the end of each decision indicate the equivalent classes match-
ing with the condition part of the rule. Notice that the condition part of the rule
r3 is matching with E1 and E4.

Second Stage. The second stage gives rule evaluation factors to the extracted
rules. We can convert the above rule represented as certain deterministic one
into uncertain probabilistic rule by giving rule evaluation factors. We extended
the original rule evaluation factors proposed by Pawlak[14] to the case where is
given equivalent class and its conditional probability P (Dj|Ei). In the context of
our applications, we propose three evaluation factors of decision rules by using
the number of evaluation to products |Ei | and the effects of products on decision
P (Dj |Ei). The extracted rule rulek can be represented in the form of if condk

then Dj (k = 1, . . . ,m). Let Condk be a set of the equivalent classes Ei matched
with the condition part condk of the extracted rule, and | • | denote cardinality.

The following certainty factor denoted as cer (Condk;Dj ) means the ratio
of the number of events satisfied with if − then rule to the number of events
satisfied with the condition part condk of the rule.

cer (Condk;Dj ) =
|Condk ∩Dj |

|Condk |

=

∑
Ei∈Condk

|Ei | P (Dj |Ei)∑
Ei∈Condk

|Ei |
,

(12)

where |Condk ∩Dj | referred as support is the number of events matched with
both condk and d = j which equals

∑
Ei∈Condk

|Ei | P (Dj |Ei), and |Condk | is
the number of events matched with condk which equals

∑
Ei∈Condk

|Ei |.
This certainty factor shows the degree to which condk → Dj holds. In our

applications, we can use this factor as confidence degree of decision to predict the
human evaluation from any product design elements. Inversely, when we have
to estimate the attribute values of the product candidates from targeted human
evaluation, the following coverage factor denoted as cov (Condk;Dj ) will be
useful.

cov (Condk;Dj ) =

∑
Ei∈Condk

|Ei | P (Dj |Ei)
|Dj |

, (13)

which means the ratio of the number of events satisfied with constructed rule
to the number of the events satisfied with Dj . This factor shows the degree to
which Dj → condk, i.e., the inverse of rule holds.

The following strength factor denoted as σ (Condk;Dj ) can be used to eval-
uate the set of decision rules.

σ (Condk;Dj ) =

∑
Ei∈Condk

|Ei | P (Dj|Ei)
| U | , (14)

which means the ratio of the number of events satisfied with if − then rule to
all the events.

In similar way, we can associate if − then rules from NEGβ(Dj) by using
P (¬Dj |Ei) in stead of P (Dj|Ei) in (12), (13) and (14). with three factors men-
tioned above.
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For example, the rule r1 in (11) has the following values of three factors.
Since Cond1={E1}, we have:
cer(E1;D0) = |E1 |P (D0|E1)

|E1| = 0.6,
cov(E1;D0) = 0.375,
σ(E1;D0) = 0.15.

In similar way, as for r3 we have:
Cond3={E1,E4 } ,
cer(E1,E4;D0) = |E1 |P (D0|E1) + |E4 |P (D0|E4)

|E1 |+|E4 | = 0.7,
cov(E1,E4;D0) = 0.875,
σ(E1,E4;D0) = 0.35.

6 Applications to Kansei Engineering

In this section, we will show the application of proposed approach to coffee taste
design in a coffee company[13]. The aim is to discover effective decision rules and
to develop coffee manufacturing conditions to produce new coffee taste fitted to
customer based on the extracted decision rules. In this application, we extracted
decision rules using decision classes by POSβ(Dj), NEGβ(Dj) and BNDβ(Dj)
defined in Section 4.

Experiment. The purpose of the experiment is to obtain the data from which
effective decision rules to design coffee taste fitted to customer feeling will be
derived using our rough set method. We carried out an experiment to identify the
hidden relations between significant coffee manufacturing conditions and human
sensory evaluations in a coffee manufacturing company.

The manufacturing conditions were combinations of two conditional attributes
of raw beans (a1) and its roast time (a2). Va1 = {Colombia Excelsio, Brazil No2 s
17/18, Mocha Lekempti }, which are typical kinds coffee beans, and Va2 = {Light,
Medium, French }, which roast levels were controlled by roast time of roast
machine. A coffee manufacturing expert made 9 sorts of coffees by combining
Va1 and Va2 , and 10 evaluators (4 male and 6 female) evaluated them on 5 points
semantic differential scale of 6 sensory words such as ’aroma’, ’fruity’, ’bitter’,
’harsh’, ’sweet’, ’soft’, and 6 attitudinal words such as ’want to buy’ and so on,
which were selected as relevant words to coffee taste.

The evaluation scores were classified into two decision classes D = {D0, D1},
for example, D = {Good aroma, No good aroma} according to the value of the
measurement scale. We obtained a decision table as shown in Table 5 for every
sensory and attitudinal word. Although we can show the results of all words, for
simple explanation, we will show the results of only two sensory words in this
paper: ’ aroma’ and ’ sweet’.

Approximation of Decision Class. The estimations of the prior probabilities
of six sensory words from data set were P (aroma) = 0.718, P (sour) = 0.659,
P (sweet) = 0.430, P (harsh) = 0.631, P (fruity) = 0.362, P (bitter) = 0.659.
You can easily see that good aroma, bitter, harsh and sour tastes are higher
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Table 5. An example of human evaluation decision table

Product ( E ) Event ( U ) Beans ( a1 ) Roast ( a2 ) Evaluation ( d )

x11 Colombia French 0
x12 Colombia French 0

E1

...
...

...
...

x19 Colombia French 0
x1,10 Colombia French 1

x21 Colombia Medium 0

E2

...
...

...
...

x2,10 Colombia Medium 1
...

...
...

...
...

x51 Brazil Medium 1

E5

...
...

...
...

x5,10 Brazil Medium 0
...

...
...

...
...

x91 Mocha Light 1
x92 Mocha Light 1

E9

...
...

...
...

x99 Mocha Light 0
x9,10 Mocha Light 1

prior probabilities than others. We obtained the gain chart of each sensory word
which shows the relation between accumulated percent of events and its gain.
Decision rules were derived so that the coverage of approximation is more than
80% because the number of product samples is relatively smaller. Thus, the
following values of β were set for each word: βaroma = 0.07, βfruity = 0.14,
βbitter = 0.14, βharsh = 0.07, βsweet = 0.04, βsour = 0.05. Using these β, decision
class of product was approximated for every words.

Extraction and Evaluation of Decision Rules. Although we can show ev-
ery rules for each sensory and attitudinal word, for simplicity, we show only
decision rules with respect to D0 = {Good aroma, No good aroma} and
D0 = {Sweet, No sweet}.

We had the following decision rules of ’aroma’. The evaluation factors of these
rules are shown in Table 6.

ar1 : if Roast = medium and then Aroma = good
ar2 : if Roast = french and Beans = Colombia, then Aroma = good
ar3 : if Roast = french and Beans = Brazil, then Aroma = good
ar4 : if Roast = light, then Aroma = no good
ar5 : if Roast = french and Beans = Mocha, then Aroma = good or no good
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Table 6. The rule evaluation factors of ’aroma’ rules: β =0.07

Certainty (cer) Coverage (cov) Strength (σ)

ar1 0.81 0.38 0.27
ar2 0.90 0.16 0.12
ar3 1.00 0.16 0.12
ar4 0.57 0.59 0.17
ar5 0.70 0.13 0.09

The rules ar1, ar2 and ar3 are positive rules of good aroma. Among them,
the rule ar1 with highest coverage value means that 81% of medium coffees has
good aroma for person, and 38% of good aroma coffee is medium. The rule ar3
with highest certainty means that 100% of french and Brazil coffee has good
aroma for person, and only 16% of good aroma coffee is french and Brazil. The
rule ar4 is a negative rule which means that 57% of light coffee has no good
aroma, and 59% of no good aroma coffee is light coffee. It is noticed that the
positive and negative rules have higher certainties than their prior probabilities
P (Good aroma) = 0.644 and P (No good aroma) = 0.356, respectively. This
means that the extracted positive and negative rules satisfy the minimal condi-
tion of Bayesian confirmation of rule. The certainty of the boundary rule ar5 is
not enough higher to guarantee the information gain by β=0.07. Total value σT

of strength of positive and negative decision rules is 68%.
When β = 0.21 which is near maximum value we can set for this word, we

obtained the following rules of ’aroma’ with Table 7:

ar6 : if Roast = french, and Beans = Brazil then Aroma = good
ar7 : if Roast = light, then Aroma = no good
ar8 : if Roast = medium, then Aroma = good or no good
ar9 : if Roast = french, and Beans = Colombia then Aroma = good or no good
ar10 : if Roast = french, and Beans = Mochal, then Aroma = good or no good

We can easily see that the number of positive and negative rules are less while
the number of boundary rules are more. It is should be noticed that the positive

Table 7. The rule evaluation factors of ’aroma’ rules: β = 0.21

Certainty (cer) Coverage (cov) Strength (σ)

ar6 1.00 0.16 0.12
ar7 0.57 0.59 0.17
ar8 0.81 0.38 0.27
ar9 0.9 0.16 0.12
ar10 0.70 0.13 0.09
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and negative rules with the highest certainties are extracted among the rule set
extracted by β = 0.0. Although the average of certainties is higher than when
β = 0.0, σT decreases to 32%.

We had the following decision rules of ’sweet’. Its prior probability was 0.430.
The evaluation factors of these rules are shown in Table 8.

sr1 : if Roast = medium, and Beans = Brazil then Sweet = yes
sr2 : if Roast = french and Beans = Brazil, then Sweet = yes
sr3 : if Roast = light and Beans = Mochal then Sweet = yes
sr4 : if Roast = french, and Beans = Colombia, then Sweet = no
sr5 : if Roast = medium and Beans = Mocha, then Sweet = no
sr6 : if Roast = french and Beans = Mocha, then Sweet = no
sr7 : if Roast = light, and Beans = Colombia, then Sweet = yes or no
sr8 : if Roast = medium and Beans = Colombia, then Sweet = yes or no
sr9 : if Roast = light and Beans = Brazil, then Sweet = yes or no

Table 8. The rule evaluation factors of ’sweet’ rules: β = 0.07

Certainty (cer) Coverage (cov) Strength (σ)

sr1 0.7 0.21 0.09
sr2 0.56 0.15 0.06
sr3 0.50 0.12 0.05
sr4 0.63 0.11 0.06
sr5 0.88 0.16 0.09
sr6 0.78 0.16 0.09
sr7 0.44 0.12 0.05
sr8 0.44 0.12 0.05
sr9 0.44 0.12 0.05

We obtained only the combinational rules between roast level and kinds of
coffee beans. This indicates that sweet taste has more complicated structure than
aroma. It is should be noticed that each positive and negative rule satisfy the
minimal condition of the Bayesian confirmations, since the prior probabilities
are P (Dj) = 0.430 and P (¬Dj) = 0.570, respectively. σT =35%

When β = 0.32 which is near maximum value we can set for this word, we
obtained the following rules of ’sweet’ with Table 9:

sr10 : if Roast = medium, and Beans = Brazil, then Sweet = yes
sr11 : if Roast = medium, and Beans = Mocha, then Sweet = no
sr12 : if Beans = Colombia, then Sweet = yes or no
sr13 : if Roast = light, then Sweet = yes or no
sr14 : if Roast = french, then Sweet = yes or no

Two positive and negative rules are the same as ones with highest certainty
extracted when β = 0.07, sr1 and sr5, respectively. These rules fully cleared the
confirmation condition. There are two boundary rules. The length of conditions
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Table 9. The rule evaluation factors of ’sweet’ rules: β = 0.32

Certainty (cer) Coverage (cov) Strength (σ)

sr10 0.70 0.21 0.09
sr11 0.88 0.16 0.09
sr12 0.42 0.32 0.14
sr13 0.46 0.35 0.15
sr14 0.38 0.29 0.13

of all boundary rule was one and general rule. We can easily see that as β is
larger, the positive and negative rules become specific one, while boundary rule
become more general one. σT =18%.

In similar way, we extracted if - then decision rules for the other words. As the
relations between human feeling or sense and coffee manufacturing conditions are
few known even for coffee experts, most of the extracted were new knowledge for
coffee manufacturing experts. These rules would be very useful for coffee experts
to produce new coffee products fitted to human taste.

7 Conclusions

This paper proposes a rough set method inspired by the BRS model or VPBRS
model, and shows that it is very effective to extract effective design decision
rules from human evaluation data such as sensory perception or feeling involving
much ambiguity in the corresponding decision classes. We have introduced an
extended decision table to represent human evaluation data together with a
new information gain that better reflects the gain feature of human sensory
perception and feeling evaluation. First, probabilistic set approximations method
are introduced based on the new definition of information gain. Moreover, we
present a two-stage method to derive probabilistic decision rules using decision
functions of approximated decision classes. We have implemented our rough set
model as a computer program and applied our rough set method to the extraction
of decision rules in a practical coffee design problem.

The results show that the proposed rough set method to extract decision
rules from human evaluation data such as sensory perception or feeling involv-
ing ambiguity or inconsistency is definitely applicable and powerful to practical
problems in Kansei Engineering. In the near future, further, we need to refine
our rough set model and apply it to more practical applications in kansei design
and to examine its effectiveness and limitations.
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Abstract. The goal of P300 wave detection is to extract relevant fea-
tures from the huge number of electrical signals and to detect the P300
component accurately. This paper introduces a modified approach to
P300 wave detection combined with an application of rough set methods
and non-rough set based methods to classify P300 signals. The modifica-
tions include an averaging method using Mexican hat wavelet coefficients
to extract features of signals. The data set has been expanded to include
signals from six words and a total of 3960 objects. Experiments with a
variety of classifiers were performed. The signal data analysis includes
comparisons of error rates, true positives and false negatives performed
using a paired t-test. It has been found that the false negatives are better
indicators of efficacy of the feature extraction method rather than error
rate due to the nature of the signal data. The contribution of this paper
is an in-depth study P300 wave detection using a modified averaging
method for feature extraction together with rough set-based classifica-
tion on an expanded data set.

Keywords: Brain computer interface, EEG signal classification, Mexi-
can hat wavelet, P300 wave detection, feature extraction, rough sets.

1 Introduction

Brain Computer Interface (BCI) involves monitoring conscious brain electrical
activity, via electroencephalogram, (EEG) signals, and detecting characteristics
of brain signal patterns, via digital signal processing algorithms, that the user
generates in order to communicate with the outside world. BCI technology pro-
vides a direct interface between the brain and a computer for people with severe
movement impairments. The goal of BCI is to liberate these individuals and
to enable them to perform many activities of daily living thus improving their
quality of life and allowing them more independence to play a more productive
role in society and to reduce social costs. Considerable research has been done on
BCI (see, e.g., [4,7,8,12,20]). One of the benefits of the P300-based BCI is that it
does not require intensive user training, as P300 is one of the brain’s ”built-in”
functions. A particular challenge in BCI is to extract the relevant signal from the
huge number of electrical signals that the human brain produces each second. In
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addition, it is also critical for any BCI system to be of practical use, the number
of channels used to extract the signals be kept to a minimum. Event related
potentials (ERPs) are psychophysiological correlates of neurocognitive function-
ing that reflect the responses of the brain to changes (events) in the external
or internal environment of the organism. ERPs have wide usage for clinical-
diagnostic and research purposes. In addition, they have also been used in brain
computer interfaces [5]. P300 is the most important and the most studied com-
ponent of the ERP [4]. Previous work in classifying signal data with rough set
methods has shown considerable promise [9,19]. Also, more recently a gradient
boosting method for P300 detection has been used by Hoffmann et al. [16]. The
differences between our two approaches are significant. First, Hoffmann et al.
have designed their own experiment to collect signal data from 10 channels and
to detect P300 on BCI data. Second, gradient boosting was used to stepwise
maximize the Bernoulli log-likelihood of a logistic regression model. Ordinary
least squares regression was used as weak learner with a classification accuracy
between 90-100% for the BCI data.

In this paper, a slightly modified method for P300 wave detection is intro-
duced. The efficacy of P300 detection consists of two components: feature extrac-
tion and classification. For feature extraction, Mexican hat wavelet coefficients
provide good features when averaged over different scales [8]. We have used a
slightly different averaging method based on Mexican hat wavelet coefficients.
The channels used to extract the signals are also changed. The range of methods
used for the classification of features values now include three rough-set based
methods and three non-rough set based methods. In addition, we have used a
more extensive data set as compared to our previous work [9]. The experiments
were conducted on the data set provided by the BCI group at the Wadsworth
Center, Albany, NY. This data set represents a complete record of P300 evoked
potentials recorded with BCI2000 using a paradigm described by Donchin et al.,
2000. Since the expected response to a particular character (and subsequently
the word) is already known, supervised learning methods are ideal for predicting
the correct character sequence. In our previous work [9] both standard super-
vised and a form of sequential character-by-character classification was used.
More recently, layered or hierarchical learning for complex concepts has been
successfully applied to data from road-traffic simulator [22] and classification of
sunspot data [23]. In both these cases, complex concepts are decomposed into
simpler but related sub-concepts. Learning at a higher-level is affected by learn-
ing at a lower level where sub-concepts are learned independently. Incremental
learning is another form of learning [33] where the structure of the decision table
is changed (updated) incrementally as new data are added to the table rather
than regenerating the whole table. In other words, learning occurs on a hierarchy
of decision tables rather than on a single table. Our work differs from both of
these methods since (i) the concept (word recognition) is simple, and (ii) our
table does not change over time. Upon further experimentation, we have found
that there is no gain in using the character-by-character classification approach.
It should also be noted the number of features and the number of channels used
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in this study are small. Our objective was to experiment with very simple fea-
tures at this stage to evaluate our extraction method in the design of a practical
P300 based BCI system. A more substantial discussion regarding practical is-
sues in BCI design can be found in Sect. 4. In addition, since the classification
methods used to classify signal data are well-known, details of these methods
are not included in the paper.

The contribution of this paper is an in-depth study of P300 wave detection
using a modified averaging method with an expanded data set. The data set
includes signals from six words with a total of 3960 objects. The signal data
analysis shows that for further improvements to the feature extraction method,
false negatives are better indicators of efficacy rather than error rate.

This paper is organized as follows. A brief introduction to ERP is given in
Section 2. ERP recording using a standard EEG technique is briefly discussed in
Sect. 3. An overview of BCI, P300 and signal information is given in Sections 4, 6
respectively. Mexican hat wavelets coefficient extraction and averaging method
is given in Sect. 5. Signal data classification methods and results are reported in
Sect. 7. Analysis of the results are discussed in Sect. 8.

2 Event Related Potential

Event Related Potential (ERP) is a voltage fluctuation in the EEG induced
within the brain that is time-locked to a sensory, motor, or cognitive event.
This event is usually the response to a stimulus. The goal of ERP research is to
evaluate some of the high level characteristics of information processing in the
central nervous system. During the performance of a given task there is a change
in the content of thought and the attentional resources that have to be used.
For any ERP investigation, we assume that psychological processes that lead
to completion of a given task are reflected in a measurable change of electric
potentials generated by the appropriate neuronal system. In the prototypical
ERP trace, there are several components as shown in Fig. 1.

The most prominent and most studied is the P3 or P300, the third positive
wave with a 300 ms latency) described in the 1960s by Sutton [29]. It is a
significant positive peak that occurs 300ms after an infrequent or significant
stimulus. The actual origin of the P300 is still unclear. It is suggested that it is
related to the end of cognitive processing, to memory updating after information
evaluation or to information transfer to consciousness [4,12]. The P300 wave is
evoked by a task known as the odd-ball paradigm. During this task, a series of
one type of frequent stimuli is presented to the experimental subject. A different
type of non-frequent (target) stimulus is sometimes presented. The task of the
experimental subject is to react to the presence of target stimulus by a given
motor response to the target stimuli, typically by pressing a button, or just by
mental counting.

There are also alternative tasks which can be used to elicit the P300 wave.
One of them is the single stimulus paradigm. In this task, a target tone occurs
randomly in time, but the tone is sometimes replaced by silence and the subject
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Fig. 1. ERP Components

is required to respond to every stimulus. Another possibility is to use a passive
odd-ball task, where the subject does not need to respond to target stimuli [21].
Both these alternative tasks elicit the P300 wave with properties very similar
to the wave recorded with the original odd-ball paradigm. The last paradigm
is called the stimulus sequence paradigm. In this procedure, a sequence of ten
tones is presented. The first six are always the standard tones and one of the
next four is the target, which is random [3]. Virtually, any sensory modality
can be used to elicit the response. In descending order of clinical use these are:
auditory, visual, somato-sensory, olfactory or even taste stimulation [25]. The
shape and latency of the P300 wave differs with each modality. For example,
in auditory stimulation, the latency is shorter than in visual stimulation [18].
This indicates that the sources generating the P300 wave differ and depend on
the stimulus modality [17]. Amplitude, latency and age dependency of the P300
wave also varies with electrode site. Analysis of the topographic distribution of
P300 latencies has demonstrated that P300 latency is dependent on electrode
location. A significant increase of P300 latency from frontal to parietal electrode
sites was reported. However, maximum amplitude of the P300 wave is at the
Pz electrode site and midline electrodes. Also, the amplitude and delay of P300
wave for different subjects varies significantly. For example, it was shown that
for older people the amplitude of P300 is smaller and delay is more than those
for younger people. This has been proposed as an index to determine age and
cognitive function of brain. However, in this paper our focus is on the detection
of the existence of the P300 wave. The BCI signal data used in our experiments
were recorded with the odd-ball paradigm.

3 EEG Signal Recording

Traditionally, the ERP recording uses a standard EEG technique followed by av-
eraging of traces aligned to the repeated stimulus. Target and non-target stimuli
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Fig. 2. Electrode Placement using the standard EEG 10-20 layout

are recorded in separate channels. Among the EEG frequency bands, for the
P300 with average instantaneous frequency, the band from 0.1 to 30 Hz is used.
Electrodes are placed using the standard EEG 10-20 layout as shown in Fig. 2.
The layout illustrates electrode designations and channel assignment numbers
used to extract signal values. The maximum amplitude of the P300 wave is seen
at the parieto-occipital and fronto-central leads [25]. The succession of waves
elicited by the above-mentioned oddball paradigm is P1, N1, P2, N2 and P3 (N
are negative and P are positive waves shown in Fig. 1). With the exception of
the last N2 and P3, the preceding waves correspond to the activation of pri-
mary sensory areas. The latency of the P3 is from 300 to 500 ms, depending
on the modality. In 20 to 60 per cent of recordings, the P3 wave is composed
of two separate peaks, the P3a and P3b. In these cases, the P3b is assumed to
be the proper P3wave. The physical energy of the stimulus does not influence
the shape, amplitude or latency of the P3 wave. The P3 is basically bilaterally
symmetrical [28].

4 Brain Computer Interface and P300

A particular challenge in BCI is to extract the relevant signal from the huge
number of electrical signals that the human brain produces each second. The
inputs to a BCI system are EEG signals (typically 64 channels) recorded from
the scalp or brain surface using a specific system of electrode placement called
the International 10-20 system shown Fig. 2[2]. EEG signals are voltage changes
of tens of microvolts at frequencies ranging from below 1 Hz to about 50 Hz.
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Different types of brain activity reflected in EEG signals (such as visual-evoked
potentials, slow cortical potentials, mu and beta rhythms, and the P300 compo-
nent of ERPs) have been used in BCI [7,20]. The most widely used P300-based
BCI is a spelling device designed by Donchin and Farwell in 1988 [10]. How-
ever, P300 detection for real-time applications is not easy and there are several
practical issues that need to be considered when designing BCI systems:

• Transfer rate: Typically, many channels and several features should be used.
In addition, the ensemble averaging of a large number of trials is required
to improve the signal-to-noise ratio, because the P300 is buried in the on-
going EEG. However, the throughput of the speller may be as low as one
character/min.

• Accuracy: For real-time applications, the P300-based BCI is less than 70%
accurate, which is insufficient to be reliable.

• EEG pattern variability: EEG signal patterns change due to factors such
as motivation, frustration, level of attention, fatigue, mental state, learning,
and other nonstationarities that exist in the brain. In addition, different
users might provide different EEG patterns.

In general, the more the averaged trials, the higher the accuracy and reliability
will be. However, it is at the expense of longer transfer time. The communication
rate determined by both accuracy and transfer time is a primary index in BCI
assessment. Therefore, a good algorithm for BCI should ensure the high accuracy
and reduce the transfer time.

The P300 wave has a relatively small amplitude (5-10 microvolts), and cannot
be readily seen in an EEG signal (10-100 microvolts). One of the fundamental
methods of detecting the P300 wave has been the EEG signal averaging. By av-
eraging, the background EEG activity cancels, as it behaves like random noise,
while the P300 wave averages to a certain distinct visible pattern. There are lim-
itations to the averaging technique and applications for which it is not suitable.
Although P300 wave is defined as a peak at 300 ms after a stimulus, it really oc-
curs within 300 to 400 ms [1]. This latency and also amplitude of the P300 wave
changes from trial to trial. Therefore, the averaging is not an accurate method
for the P300 wave detection and there is a need for developing a technique based
on advanced signal processing methods for this purpose. Farwell and Donchin
introduced some P300 detection methods for BCI such as stepwise discriminant
analysis (SWDA), peak picking, area, and covariance in 1988 [10], and discrete
wavelet transform (DWT) to the SWDA [7]. A method for P300 wave detection
based on averaging of Mexican hat wavelet coefficients was introduced in [8] and
further elaborated in [9].

5 The Mexican Hat Wavelet and Feature Extraction

To reduce the number of trials required to extract the P300 wave and to increase
the accuracy of P300 detection, we have used Mexican hat wavelets to extract
features. Wavelet coefficients of a signal x(t) at time point p are defined in Eq. 1.
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c(s, p) =

∞∫
−∞

x(t)ψ(s, p, t)dt, (1)

where s is a scale number, t is a time point, and ϕ(s, p, t) is an analyzing wavelet.
The analyzing wavelet used is the Mexican hat defined in Eq. 2.

ψ(s, p, t) =
2√
3
π− 1

4 (1 − α2)e−
1
2 α2

. (2)

where α = t−p
s . Instead of averaging EEG signals from different trails, wavelet

coefficients were extracted using different scales (s) and averaged over different
scales for a trial. For each trial, the EEG signal is stored in one matrix (total
number of samples by 64 channels). One of the challenges of feature extraction
is to determine which of the 64 channels (scalp positions) contain useful infor-
mation. In BCI literature, it has been shown that the five listed channels are
typical EEG channels that have information about P300 wave [5]. In this study,
signal data from channel numbers 10, 11, 12, 34, 51 have been used (a change
in two channel positions from our previous study) after experimenting with dif-
ferent channel combinations. The average signal value is computed using Eq. 3.
Subtraction of the two channels (10 and 12) represents spatial differentiation.
Spatial differentiation was included to amplify the existence of P300 wave.

Average Signal V alue =
Out(CH11) + Out(CH10)−Out(CH12) + Out(CH34) + Out(CH51). (3)

Consider the averaged wavelet coefficient over different scales shown in Fig. 3.
Assume that the maximum of this curve has the amplitude of A0 and occurs

at time t0. Now if we find the two local minimums, one just before A0 and
another just after A0 with amplitudes B1 and B2 respectively, then we can define
two heuristic features averaged over scales from 30 to 100 (shown in Fig. 3).
Amplitude of the peak (f1) and Time difference (f2) were calculated in our
earlier work using Eqs. 4 and 5.

Amplitude of the peak = R1+R2,
where R1= A0−B1 and R2= A0−B2

(4)

Time difference= |t0−300|
300 . (5)

Note, that to detect P300 wave, amplitude of the peak feature should have a
“large” value and time difference feature should be as “small” as possible (zero
is considered ideal). The two features were recalculated using Alg. 1:
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Fig. 3. Averaged Wavelet Coefficient over different scales

Algorithm 1. Algorithm for calculating f1 and f2

Input : Amplitudes A0, B1, B2 and time t0
Output: Features f1 and f2

if (t0 < 300 or t0 > 400) then
f1 = 0

else
end
f1 is calculated using equation 3
if (t0 ≤ 340 or t0 ≥ 360) then

f2 = 0
else

f2=
min[|t0−340|,|t0−360|]

40
end

6 BCI Signal Information

We have used the data set provided by the BCI group at the Wadsworth Center,
Albany, NY. EEG was recorded from 64 scalp positions (for details, see [5]).
This data set represents a complete record of P300 evoked potentials recorded
with BCI2000 using a paradigm described by Donchin et al. [7], and originally
by Farwell and Donchin [10]. The signals were digitized at 240Hz and collected
from one subject in three sessions. Each session consisted of a number of runs. In
each run, the subject focused attention on a series of characters, e.g., the word
”SEND” as shown in Fig. 4(a).
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(a)

(b)

Fig. 4. (a) User Display for Spelling Paradigm, (b) Focus on a Character

In this speller, a matrix of six by six symbols, comprising all 26 letters of the
alphabet and 10 digits (0-9), is presented to the user on a computer screen. The
rows and columns of the matrix are intensified successively for 100 ms in a ran-
dom order. After intensification of a row/column, the matrix is blank for 75 ms.
At any given moment, the user focuses on the symbol he/she wishes to communi-
cate, and counts the number of times the selected symbol flashes. In response to
the counting of this oddball stimulus, the row and column of the selected symbol
elicit a P300 wave, while the other 10 rows and columns do not. When a subject
focuses on one character, the matrix is displayed for a 2.5 s period, and during
this time each character has the same intensity (i.e., the matrix was blank). Sub-
sequently, each row and column in the matrix was randomly intensified for 100
ms. Row/column intensifications were block randomized in blocks of 12. Sets of
12 intensifications were repeated 15 times for each character. Each sequence of
15 sets of intensifications was followed by a 2.5 s period, and during this time the
matrix was blank. This period informs the user to focus on the next character
in the word that was displayed on the top of the screen. In other words, for each
character, 180 entries of feature values are stored: 90 for row intensification and
90 for column intensification. For example, A is recognized only when row 7 and
column 1 features indicate a P300 component (see Fig. 4(b)). The steps involved
in extracting signal information can be found in [9].

7 Signal Data Classification: Methods and Results

The objective of BCI signal data analysis and classification is two fold: to de-
termine a good feature extraction method and to identify appropriate channels
for signal extraction and also to find a good classifier to predict the correct
characters recognized by a subject. These two objectives are intertwined, since
the classifier is in essence an indicator of the effectiveness of the feature extrac-
tion method. In this work we have continued to use five features (attributes):
Stimulus code (character to be recognized), amplitude of the peak, time differ-
ence, ratio of amplitude to time difference and Stimulus Type (decision). Signal
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Table 1. Word “BOWL” Classification

Classification Results

Method Error Rate False Negative True Positive Coverage

RSRuleBased 25 75 17 94
RSTreeBased 35 50 17 81

LEM2 19 67 33 100
RuleBased(RIP ) 18 100 0 100
TreeBased(C4.5) 17 0 0 100

Metalearner(bagging) 18 100 0 100

data from 6 sets of words in uppercase: BOWL, CAT, DOG HAT, FISH and
WATER were used for our experiments. Each character was stored in a table
with 90 entries for row intensification and 90 entries for column intensification.
For example, the word BOWL has a table with 720 entries. Discretization was
used since three of the feature values (i.e. amplitude of the peak, time difference,
ratio of amplitude to time difference) are continuous. We have used both local
and global method in RSES for discretization [2,26]. However, only the results
local method were reported in this paper. The experiments were conducted us-
ing 10-fold cross-validation technique. Four different measures were used for this
experiment: error rate (overall misclassification), false negative (a presence of
P300 wrongly classified as zero), false positive (absence of P300 wrongly clas-
sified as one) and coverage. These measures are considerably different from the
ones used in our previous work. In addition to making it possible to compare
different classification methods, these measures also provide a better insight into
our extraction and classification methods (discussed in Sect. 8). Experiments
were performed with RSES [2,26] using rule-based (RSRuleBased) and tree-
based (RSTreebased) methods. The rule-based method uses genetic algorithms
in rule derivation [30]. LERS [13,14] system was also used for classification. Ex-
periments with non-rough set based methods were performed with WEKA [31]
using a rule-based(RIP), tree-based (J48) and bagging (Metalearner) methods.
RIP uses a RIPPER algorithm for efficient rule induction [6]. J48 is the well-
known C4.5 revision 8 algorithm [32]. We have also included a bagging technique
to reduce variance and improve classification (minimize the error rate). The error
rate measure is calculated in the traditional way using Eq. 6. The classification
results for the six words (testing set) are shown in Tables 1,2, 3, 4, 5 and 6 re-
spectively.

error rate= TP+TN
TP+FP+TN+FN . (6)

8 Analysis of Classification Results

The number of entries (data) for Stimulus Type (i.e., decision = 1) were very few
compared to the number of entries for Stimulus Type (decision=0). In the test
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Table 2. Word “CAT” Classification

Classification Results

Method Error Rate False Negative True Positive Coverage

RSRuleBased 13 56 44 98
RSTreeBased 17 33 44 93

LEM2 17 60 40 100
RuleBased(RIP ) 15 43 57 100
TreeBased(C4.5) 15 43 57 100

Metalearner(bagging) 13 33 67 100

Table 3. Word “DOG” Classification

Classification Results

Method Error Rate False Negative True Positive Coverage

RSRuleBased 19 78 22 83
RSTreeBased 30 44 22 100

LEM2 19 29 71 100
RuleBased(RIP ) 19 67 33 100
TreeBased(C4.5) 17 50 50 100

Metalearner(bagging) 19 67 33 100

Table 4. Word “FISH” Classification

Classification Results

Method Error Rate False Negative True Positive Coverage

RSRuleBased 18 67 25 97
RSTreeBased 29 50 25 86

LEM2 19 57 43 100
RuleBased(RIP ) 15 40 60 100
TreeBased(C4.5) 17 50 50 100

Metalearner(bagging) 17 50 50 100

set, the ratio is about one to four. The signal data for almost all the words were
inconsistent. The inconsistency levels for some words were as high as 95%. In
fact, there was no appreciable gain in prior discretization. This was particularly
important for the use of LEM2 which does not work directly on numerical values.
For P300 detection, the size of the rule set or the speed of classification is not
important. A comparison of error rates for the six classification methods on the
entire data set is shown in Fig. 5. The percentage of true positives for the six
classification methods is given in Fig. 6. The percentage of false negatives for the
six classification methods is compared for the six words in Fig. 7. C4.5 algorithm
has a 16% error rate and LEM2 algorithm has 18% error rate when averaged
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Table 5. Word “HAT” Classification

Classification Results

Method Error Rate False Negative True Positive Coverage

RSRuleBased 22 33 22 94
RSTreeBased 26 33 22 87

LEM2 19 32 68 100
RuleBased(RIP ) 17 50 50 100
TreeBased(C4.5) 15 40 60 100

Metalearner(bagging) 15 40 60 100

Table 6. Word “WATER” Classification

Classification Results

Method Error Rate False Negative True Positive Coverage

RSRuleBased 20 60 27 93
RSTreeBased 33 47 27 81

LEM2 17 78 22 100
RuleBased(RIP ) 18 60 40 100
TreeBased(C4.5) 17 50 50 100

Metalearner(bagging) 17 50 50 100

over six words. On an average, LEM2 algorithm has 46% and C4.5 algorithm has
45% classification accuracy for true positives. In the case of false negative rates,
RSTreeBased algorithm has 43% and C4.5 algorithm has 39% false negative
percentage. However, it should also be noted that the averages for non-rough set
based method are somewhat misleading as C4.5 algorithm gives 0 true positives
and 0 false negatives for one word (BOWL). When this word is removed from
calculation, the average is 47%.

8.1 Paired Difference t-Test

A paired t-test was performed to analyze i) classification error rates ii) true pos-
itives and iii) false negatives for the RS method and non-RS method with the
best results. We now give a detailed explanation of the analysis with respect to
the smallest error rate for the two classes of algorithms. We want to test the hy-
pothesis that mean difference between the two classification learning methods is
zero. Let μd, σ2

d denote the mean difference and variance in the difference in error
rates of a random sample of size n from a normal distribution N(μd, σ2

d), where
μd and σ2

d are both unknown. Let H0 denote the hypothesis to be tested (i.e.,
H0 : μd = 0). This is our null hypothesis. The paired difference t-test is used to
test this hypothesis and its alternative hypothesis (HA : μd �= 0). We start with
pairs (ε11, ε21), , (ε1n, ε2n), where ε1i, ε2i are the ith error rates resulting from the
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Fig. 5. Comparison of Error Rates

Fig. 6. Comparison of True Positives

application of the RS and non-RS classification learning algorithms, respectively,
and i = 1, . . . , n. Let di = ε1i − ε2i. Underlying the null hypothesis H0 is the
assumption that the di values are normally and independently distributed with
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Fig. 7. Comparison of False Negatives

mean μd and variance σ2
d. The t-statistic was used to test the null hypothesis is

as follows:

t =
d̄− μd

Sd/
√
n

=
d̄− 0
Sd/

√
n

=
d̄
√
n

Sd
(7)

where t has a student’s t-distribution with n − 1 degrees of freedom [15]. The
shape of the t distribution depends on the sample size n− 1 (number of degrees
of freedom). In our case, n − 1 = 5 relative to error rates for different six word
groups. The significance level α of the test of the null hypothesis H0 is the prob-
ability of rejecting H0 when H0 is true (called a Type I error). Let tn−1, α/2
denote a t-value to right of which lies α/2 of the area under the curve of the
t-distribution that has n−1 degrees of freedom. Next, we formulate the following
decision rule:

Decision Rule: Reject H0 (μd = 0) at significance level α if, and only if |t| >
tn−1,α/2

Probability distribution (Pr) values for tn−1,α/2 can obtained from a t-distribution
table (Beyer 1968). In what follows, α = 0.10, and n− 1 = 5. The SAS statistical
toolset called JMPIN has been used to compute t-values [27]. The paired t-test
was applied for classification error rates (with best RS and non-RS methods) for
the six words. With 5 degrees of freedom, we find that Pr(|t| < 2.015) = 0.95
where tn−1,α/2 for t9,0.05 = 2.015. The null hypothesis H0 is rejected, since |t| =
|−7| > 2.015 at the 10% significance level. The t-value for True Positive rates was
found to be -0.17 when the paired t-test was applied (with best RS and non-RS
methods) for the six words. The null hypothesis H0 is accepted in this case, since
|t| = | − 0.17| < 2.015 at the 10% significance level. We get a similar result in the
case of False Negative rates, where the t-value was found to be -0.42 when the
paired t-test was performed. This means that the null hypothesis H0 is accepted,
since |t| = | − 0.42| < 2.015 at the 10% significance level.
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The paired t-test results show that performance of the classification algorithms
differ if we consider only the error rate measure. There is no significant difference
in performance if only true positive or false negative rates are considered. Also,
the average error rate is about 16% which is considered reasonable for a P300
detection. However, the concern is that the percentage of false negatives (a
presence of P300 wrongly classified as zero) is quite high (43%). This is important
because of the very nature of the signal data (with too few values for d=1).
Hence, the error rate measure alone is not really helpful in drawing conclusions
about the efficacy of the P300 feature extraction method. This means that the
feature extraction method has to be refined futher in order to obtain a sharper
separation between the presence and absence of P300.

9 Conclusion

This paper introduces a modified approach to P300 wave detection combined
with an application of rough set methods and non-rough set based methods
used to classify P300 signals. The data set for our experiments was expanded
significantly. The signal data analysis include comparisons of error rates, true
positives and false negatives using a paired t-test. Our analysis shows that there
is no significant difference in performance of the various classifiers. However, it
has been found that for further improvements to the feature extraction method,
false negatives are better indicators of efficacy rather than error rate. In addition
to considering improvements to the feature extraction method for the BCI data
set, we are also in the process of i) designing a new P300 based BCI system which
is quite different from the one currently in use that was proposed by Farwell and
Donchin [10] ii) data collection from subjects. The design of a new P300 based
BCI is complete and the hardware is in place. Clinical trials for data collection
is about to begin.
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Abstract. Data models that are induced in classifier construction of-
ten consist of multiple parts, each of which explains part of the data.
Classification methods for such multi-part models are called multimodal
classification methods. The model parts may overlap or have insufficient
coverage. How to deal best with the problems of overlapping and in-
sufficient coverage? In this paper we propose a hierarchical or layered
approach to this problem. Rather than seeking a single model, we con-
sider a series of models under gradually relaxing conditions, which form a
hierarchical structure. To demonstrate the effectiveness of this approach
we consider two classifiers that construct multi-part models – one based
on the so-called lattice machine and the other one based on rough set
rule induction, and we design hierarchical versions of the two classifiers.
The two hierarchical classifiers are compared through experiments with
their non-hierarchical counterparts, and also with a method that com-
bines k-nearest neighbors classifier with rough set rule induction as a
benchmark. The results of the experiments show that this hierarchical
approach leads to improved multimodal classifiers.

Keywords: hierarchical classification, multimodal classifier, lattice ma-
chine, rough sets, rule induction, k-nearest neighbors.

1 Introduction

Many machine learning methods are based on generation of models with sepa-
rate model parts, each of which explains part of a given dataset. Examples in-
clude decision tree induction [20], rule induction [7] and the lattice machine [33].
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A decision tree consists of many branches, and each branch explains certain
number of data examples. A rule induction algorithm generates a set of rules as
a model of data, and each rule explains some data examples. The lattice machine
generates a set of hypertuples as a model of data, and each hypertuple covers
a region in the data space. We call this type of learning multimodal learning or
multimodal classification.

In contrast some machine learning paradigms do not construct models with
separate parts. Examples include neural networks, support vector machines and
Bayesian networks.

In the multimodal learning paradigm the model parts may overlap or may
have insufficient coverage of a data space, i.e., the model does not cover the
whole data space. In a decision tree the branches do not overlap and cover the
whole data space. In the case of rule induction, the rules may overlap and may
not cover the whole data space. In the case of lattice machine the hypertuples
overlap and the covering of the whole data space is not guaranteed too.

Overlapping makes it possible to label a data example by more than one class
whereas insufficient coverage makes it possible that a data example is not labeled
at all. How to deal best with the overlapping and insufficient coverage issues?

In this paper we consider a hierarchical strategy to answer this question. Most
machine learning algorithms generate different models from data under different
conditions or parameters, and they advocate some conditions for optimal models
or let a user specify the condition for optimal models. Instead of trying to find the
‘optimal’ model we can consider a series of models constructed under different
conditions. These models form a hierarchy, or a layered structure, where the
bottom layer corresponds to a model with the strictest condition and the top
layer corresponds to the one with the most relaxed condition. The models in
different hierarchy layers correspond to different levels of pattern generalization.

To demonstrate the effectiveness of this strategy we consider two multimodal
classifiers: one is the lattice machine (LM), and the other one is a rough set based
rule induction algorithm RSES-O. We apply the hierarchical strategy in these
two classifiers, leading to two new classification methods: HLM and RSES-H.

HLM is a hierarchical version of the lattice machine [33]. As mentioned earlier,
the lattice machine generates hypertuples as model of data, but the hypertuples
overlap (some objects are multiply covered) and usually only a part of the whole
object space is covered by the hypertuples (some objects are not covered). Hence,
for recognition of uncovered objects, we consider some more general hypertuples
in the hierarchy that covers these objects. For recognition of multiply covered
objects, we also consider more general hypertuples that cover (not exclusively)
the objects. These covering hypertuples locate at various levels of the hierarchy.
They are taken as neighborhoods of the object. A special voting strategy has
been proposed to resolve conflicts between the object neighborhoods covering
the classified object.

The second method, called RSES-H, is a hierarchical version of the rule-based
classifier (hereafter referred to by RSES-O) in RSES [22]. RSES-O is based on
rough set methods with optimization of rule shortening. RSES-H constructs



226 A. Skowron et al.

a hierarchy of rule-based classifiers. The levels of the hierarchy are defined by
different levels of minimal rule shortening [6,22]. A given object is classified by
the classifier from the hierarchy that recognizes the object and corresponds to
the minimal generalization (rule shortening) in the hierarchy of classifiers.

We compare HLM and RSES-H through a series of experiments with their
non-hierarchical counterparts, LM [30,32] and RSES-O. We also compare the
two algorithms with a state of the art classifier, RIONA, which is a combi-
nation of rough sets with the k-nearest neighbors (kNN) classifier [15,22]. The
evaluation of described methods was done through experiments with benchmark
datasets from UCI Machine Learning Repository [9] and also with some artifi-
cially generated data. The results of our experiments show that in many cases
the hierarchical strategy leads to improved classification accuracy.

This paper extends the paper [24]. In this paper we provide more details on
how the layers of HLM and RSES-H are constructed and a brief description
of the reference algorithm RIONA. We add experimental results for artificially
generated data containing noise and analyze how the hierarchical methods deal
with noise. We also analyze the statistical significance of the classification accu-
racy improvement provided by the hierarchical approach.

It is necessary to note that our hierarchical strategy to multimodal classifica-
tion is different from the classical hierarchical classification framework (see, e.g.,
[11,27,19,8,3,2,17]), which aims at developing methods to learn complex, usually
hierarchical, concepts. In our study we do not consider the hierarchical structure
of the concepts in question; therefore our study is in fact a hierarchical approach
to flat classification.

The paper is organized as follows. Section 2.1 introduces the lattice machine
classifier LM used as the basis for the hierarchical HLM. Section 2.2 describes
the rough set method RSES-O used as the basis for the hierarchical RSES-H.
Section 2.3 presents the algorithm RIONA used in experiments as the refer-
ence classifier. In Section 3 we introduce the hierarchical classifier HLM and in
Section 4 the hierarchical RSES-H is presented. Section 5 provides experimental
results obtained for the described classifiers and Section 6 concludes the paper
with a brief summary.

2 Multimodal Classifiers

In this section we present in some detail three multimodal classifiers. In later
sections we will present their hierarchical counterparts.

2.1 The Lattice Machine

The lattice machine [30,32,33] is a machine learning paradigm that constructs a
generalized version space from data, which serves as a model (or hypothesis) of
data. A model is a hyperrelation, or a set of hypertuples (patterns), such that
each hypertuple in the hyperrelation is equilabeled, supported, and maximal.
Being equilabeled means the model is consistent with data (i.e., matches objects
with the same decision only); being maximal means the model has generalization
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capability; and being supported means the model does not generalize beyond the
information given in the data. When data come from Euclidean space, the model
is a set of hyperrectangles consistently, tightly and maximally approximating the
data. Observe that, this approach is different from decision tree induction, which
aims at partition of the data space. Lattice machines have two basic operations:
a construction operation to build a model of data, and a classification operation
that applies the model to classify data. The model is in the form of a set of
hypertuples [31]. To make this paper self-contained we review the concepts of
hypertuple.

Let R = {a1, a2, · · · , an} be a set of attributes, and y be the class (or decision)
attribute; dom(a) be the domain of attribute a ∈ R∪{y}. In particular we let C =
dom(y) – the set of class labels. Let V

def=
∏n

i=1 dom(ai) and L
def=
∏n

i=1 2dom(ai).
V is called the data space defined by R, and L an extended data space. A (given)
dataset is D ⊆ V × C – a sample of V with known class labels. If we write
an element t ∈ V by 〈v1, v2, · · · , vn〉 then vi ∈ dom(ai). If we write h ∈ L by
〈s1, s2, · · · , sn〉 then si ∈ 2dom(ai) or si ⊆ dom(ai). An element of L is called a
hypertuple, and an element of V a simple tuple. The difference between the two
is that a field in a simple tuple is a value (hence value-based) while a field in a
hypertuple is a set (hence set-based). If we interpret vi ∈ dom(ai) as a singleton
set {vi}, then a simple tuple is a special hypertuple. L is a lattice under the
ordering [30]: for s, t ∈ L,

t ≤ s ⇐⇒ t(x) ⊆ s(x) (1)

with the sum and product operations given by

t + s = 〈t(x) ∪ s(x)〉x∈R. (2)
t × s = 〈t(x) ∩ s(x)〉x∈R. (3)

Here t(x) is the projection of t onto attribute x.
The Lm algorithm [31] constructs the unique model but it is not scalable to

large datasets. The efficient algorithm CaseExtract, presented in [30], con-
structs such a model with the maximal condition relaxed. Such a model consists
of a set of hypertuples which have disjoint coverage of the dataset.

Let D be a dataset, which is split into k classes: D = {D1, D2, · · · , Dk} where
Di and Dj are disjoint, i �= j. The CaseExtract algorithm [30] is as follows:

– For i = 1 to k:
• Initialization: let X = Di, Hi = ∅.
• Repeat until X is empty:

1. Let h ∈ X and X = X \ {h}.
2. For each g ∈ X , if h+g is equilabeled then h = h+g and X = X\{g}
3. Let Hi = Hi ∪ {h}.

– H =
⋃k

i=1 Hi is a model of the data.

Note that h+ g is defined in Eq.(2). This algorithm bi-partitions X into a set of
elements the sum of which is an equilabeled element, and a new X consisting of
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the rest of the elements. The new X is similarly bi-partitioned until X becomes
empty.

When such a model is obtained, classification can be done by the C2 algorithm
[32]. C2 distinguishes between two types of data: those that are covered by one
and only one hypertuple (primary data), those that are covered by more than
one hypertuple (secondary data) and those that are not covered (tertiary data).
Classification is based on two measures. Primary data t is put in the same class
as the hypertuple that covers t, and secondary and tertiary data are classified
with the use of these two measures.

Let R be a set of attributes, X ⊆ R, VX be the projection of V onto X , and
S

def= VX . VX is the domain of X . When X = R, VR is the whole data space,
i.e., VR = V . Consider a mass function m : 2S → [0, 1] such that m(∅) = 0 and∑

x∈2S m(x) = 1. Given a, b ∈ 2S , where m(b) �= 0, the first measure is derived
by answering this question: what is the probability that b appears whenever
a appears? In other words, if a appears, what is the probability that b will
be regarded as appearing as well? Denoting this probability by C0

X(b|a), one
solution is:

C0
X(b|a) =

∑
a∪b⊆c m(c)∑

b⊆c m(c)
.

In the same spirit, another measure is defined as

C1
X(b|a) =

∑
c⊆b m(c)∑

c⊆a∪b m(c)
.

C1
X(b|a) measures the degree in which merging a and b preserves the existing

structure embodied by the mass function.
With the above two measures, the C2 algorithm for classification is as follows

[32]. Let t ∈ V , and H be the set of hypertuples generated by the CaseExtract
algorithm.

– For each s ∈ H , calculate C0
R(s|t) and C1

R(s|t).
– Let A be the set of s ∈ H which have maximal C0

X values. If A has only one
element, namely A = {s}, then label t by the label of s. Otherwise, let B be
the set of s ∈ A which have maximal C1

X values. If B has only one element,
namely B = {s}, then label t by the label of s. Otherwise, label t by the
label of the element in B which has the highest coverage.

Some variants of C2 are discussed in [33]. C2 performed extremely well on pri-
mary data, but not desirable on secondary and tertiary data.

2.2 RSES-O

The Rough Set Exploration System (RSES) (see [6,5,22]) is a freely available soft-
ware system toolset for data exploration, classification support and knowledge
discovery. Many of the RSES methods have originated from rough set theory in-
troduced by Zdzis�law Pawlak during the early 1980s (see [18]). At the moment of
writing this paper RSES version 2.2 is the most recent (see [5] for more details).
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One of the most popular methods for classifiers construction is based on learn-
ing rules from examples. Therefore there are several methods for calculation of
the decision rule sets implemented in the RSES system (see [5,22]). One of these
methods generates consistent decision rules with the minimal number of de-
scriptors. This kind of decision rules can be used for classifying new objects as
a standard rough set method of classifiers construction (see e.g. [23]).

Unfortunately, the decision rules consistent with the training examples can
often be inappropriate to classify unseen cases. This happens, e.g. when the
number of examples supporting a decision rule is relatively small. Therefore in
practice we often use approximate rules instead of consistent decision rules. In
RSES we have implemented a method for computing approximate rules (see
e.g. [4]). In our method we begin with algorithms for synthesis of consistent
decision rules with the minimal number of descriptors from a given decision
table. Next, we compute approximate rules from already calculated consistent
decision rules using the consistency coefficient. For a given training table D the
consistency coefficient cons of a given decision rule α → q (q is the decision class
label) is defined by:

cons(α → q) =
‖{x ∈ Dq : x satisfies α}‖
‖{x ∈ D : x satisfies α}‖

where Dq denotes the decision class corresponding to q. The original consistent
decision rules with the minimal number of descriptors are reduced to approxi-
mate rules with consistency coefficient exceeding a fixed (optimal) threshold.

The resulting rules are shorter, more general (can be applied to more training
objects) but they may lose some of their precision, i.e., may provide wrong
answers (decisions) for some of the matching training objects. In exchange for
this we expect to receive more general rules with higher quality of classification
for new cases.

The method of classifier construction based on approximate rules is called the
RSES-O method.

2.3 Rule Induction with Optimal Neighborhood Algorithm
(RIONA)

RIONA [15] is a classification algorithm implemented in RSES [6,22] that com-
bines the kNN classifier with rule induction. The method induces a distance
measure and distance-based rules. For classification of a given test object the
examples most similar to this object vote for decisions but first they are com-
pared against the rules and the examples that do not match any rule are excluded
from voting.

First the algorithm induces a distance measure ρ from a data sample D. The
distance measure is defined by the weighted sum of the distance measures ρi for
particular attributes ai:

ρ(x, y) =
n∑

i=1

wi · ρi(ai(x), ai(y)).
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RIONA uses the combination of the normalized city-block Manhattan metric
for numerical attributes and the Simple Value Difference (SVD) metric for nom-
inal attributes [15]. The distance between values of a numerical attribute ai is
defined by the absolute value difference between these values normalized by the
range of attribute values in the data sample D:

ρi(ai(x), ai(y)) =
|a(x) − a(y)|
amax − amin

.

where amin = minx∈D ai(x) and amax = maxx∈D ai(x). The SVD distance be-
tween values of a nominal attribute ai is defined by the difference between the
decision distributions for these values in the data sample D:

ρi(ai(x), ai(y)) =
∑
q∈C

∣∣∣P (z ∈ Dq|z ∈ Dai(x))− P (z ∈ Dq|z ∈ Dai(y))
∣∣∣ .

where Dai(x0) = {x ∈ D : ai(x) = ai(x0)}. The weights wi are optimized with
the iterative attribute weighting procedure from [35].

To classify a tuple t RIONA uses the k nearest neighbors n1(t), . . . , nk(t) of
t in the data sample D according to the previously defined distance measure ρ.
Before voting the nearest neighbors are examined with consistent maximal rules
derived from the data sample D [15]. If there is no consistent maximal rule that
covers both a given neighbor nj(t) and the tuple t, the neighbor nj(t) is excluded
from voting. The neighbors that share at least one maximal consistent rule with
the tuple t are assigned with the vote weights vj inversely proportional to square
of the distance to t:

vj(t) =
{ 1

ρ(nj(t),t)2 if there is consistent maximal rule covering t and nj(t)
0 otherwise

.

The tuple t is classified by q with the largest sum of nearest neighbor votes
S(t, q) =

∑
nj(t)∈Dq

vj(t), where 1 ≤ j ≤ k.
The value of k is optimized automatically in the range 1 ≤ k ≤ 100 by the

efficient leave-one-out procedure [15] applied to the data sample D.

3 HLM: Hierarchical Lattice Machine

In this section we present an implementation of our hierarchical approach to
multimodal classification. This is a hierarchical version of the lattice machine,
referred to by HLM.

We implement the hierarchical strategy in the lattice machine with the expec-
tation that the classification accuracy of the lattice machine can be improved.
Here is an outline of the solution.

We apply the CaseExtract algorithm repeatedly to construct a hierarchy
of hypertuples. The bottom layer is constructed by CaseExtract directly from
data. Then those data that are covered by the hypertuples with small coverage
are marked out in the dataset, and the algorithm is applied again to construct
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a second layer. This process is repeated until a layer only with one hypertuple
is reached. At the bottom layer all hypertuples are equilabeled, while those at
higher layers may not be equilabeled.

To classify a data tuple (query) we search through the hierarchy to find a
hypertuple at the lowest possible layer that covers the query. Then all data
(including both marked and unmarked) covered by the hypertuple are weighted
by an efficient counting-based weighting method. The weights are aggregated
and used to classify the query. This is similar to the weighted kNN classifier, but
it uses counting instead of distance to weigh relevant data.

3.1 Counting-Based Weighting Measure

In this section we present a counting-based weighting measure, which is suitable
for use with hypertuples.

Suppose we have a neighborhood D for a query tuple (object) t and elements
in D may come from any class. In order to classify the query based on the
neighborhood we can take a majority voting with or without weighting. This is
the essence of the well-known kNN classifier [14,12].

Weighting is usually done by the reverse of distance. Distance measures usu-
ally work for numerical data. For categorical data we need to transform the data
into numerical form first. There are many ways for the transformation (see for
example [26,10,34]), but most of them are task (e.g., classification) specific.

We present a general weighting method that allows us to count the number
of all hypertuples, generated by the data tuples in a neighborhood of a query
tuple t, that cover both t and any data tuple x in the neighborhood. Intuitively
the higher the count the more relevant this x is to t, hence x should play a
bigger role (higher weight). The inverse of this count can be used as a measure
of distance between x and t. Therefore, by this count we can order and weight
the data tuples. This counting method works for both numerical and categorical
data in a conceptually uniform way. We consider next an efficient method to
calculate this count.

As a measure of weighting we determine, for tuples t and x in D, the number
of hypertuples that cover both t and x. We call this number the cover of t and
x, denoted by cov(t, x). The important issue here is how to calculate cov(t, x)
for every pair (t, x).

Consider two simple tuples t =< t1, t2, · · · , tn > and x =< x1, x2, · · · , xn >. t
is a simple tuple to be classified (query) and x is any simple tuple in D. What we
want is to find all hypertuples that cover both t and x. We look at every attribute
and explore the number of subsets that can be used to generate a hypertuple
covering both t and x. Multiplying these numbers across all attributes gives rise
to the number we require.

Consider an attribute ai. If ai is numerical, Ni denotes the number of intervals
that can be used to generate a hypertuple covering both ti and xi. If ai is
categorical, Ni denotes the number of subsets for the same purpose. Assuming
that all attributes have finite domains, we have [29]:
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Ni =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(max(ai) −max({xi, ti}) + 1) × (min({xi, ti})−min(ai) + 1)

if ai is numerical
2mi−1 if ai is categorical and xi = ti

2mi−2 if ai is categorical and xi �= ti.

(4)

where max(ai), min(ai) are the maximal and the minimal value of ai, respec-
tively, if ai is numerical, and mi = |dom(ai)|, if ai is categorical.

The number of covering hypertuples of t and x is cov(t, x) =
∏

i Ni.
A simple tuple x ∈ D is then weighted by cov(t, x) in a kNN classifier. More

specifically, we define
K(t, q) =

∑
x∈Dq

cov(t, x).

where Dq is a subset of D consisting of all q class simple tuples. K(t, q) is the
total of the cover of all q class simple tuples. Then the weighted kNN classifier
is the following rule (wkNN rule):

t is classified by q0 that has the largest K(t, q) for all q.

3.2 The Classification Procedure

We now present a classification procedure, called, hierarchical classification based
on weighting (HLM).

Let D be a given dataset, let HH be a hierarchy of hypertuples constructed
from D, and let t be a query – a simple tuple to be classified.

Step 1. Search HH in the bottom up order and stop as soon as a covering
hypertuple is found at layer l. Continue searching layer l until all covering
hypertuples are found. Let S be a set of all covering hypertuples from this
layer;
Step 2. Let N ← {h : h ∈ S}, a neighborhood of the query;
Step 3. Apply wkNN to classify t.

Note that h is the set of simple tuples covered by h.

4 RSES-H: Hierarchical Rule-Based Classifier

In this section we present another implementation of our hierarchical approach
to multimodal classification. This is a hierarchical version of RSES-O, referred
to by RSES-H.

In RSES-H a set of minimal decision rules [7,22] is generated. Then, different
layers for classification are created by rule shortening. The algorithm works as
follows:

1. At the beginning, we divide original data sets into two disjoint parts: train
table and test table.

2. Next, we calculate (consistent) rules with a minimal number of descriptors
for the train table (using covering method from RSES [7,22]). This set of
rules is used to construct the first (the bottom) level of our classifier.
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3. In the successive steps defined by the following consistency thresholds (after
rule shortening): 0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.65, 0.60, we generate a set
of rules obtained by shortening all rules generated in the previous step. The
rules generated in the i-th step are used to construct the classifier with the
label i + 1 in the classifier hierarchy.

4. Now, we can use our hierarchical classifier in the following way:
(a) For any object from the test table, we try to classify this object using

decision rules from the first level of our classifier.
(b) If the tested object is classified by rules from the first level of classifier,

we return the decision value for this object and the remaining levels of
our classifier are not used.

(c) If the tested object can not be classified by rules from the first level, we
try to classify it using the second level of our hierarchical classifier, etc.

(d) Finally, if the tested object can not be classified by rules from the level
with the label 9, then our classifier can not classify the tested object.
The last case happens seldom, because higher levels are usually sufficient
for classifying any tested object.

The range of thresholds for the rule consistency (see Section 2.2) in the third
step of the algorithm presented above have been determined on the basis of ex-
perience obtained from the previous experiments (see e.g. [1]). The step between
thresholds has been determined to 0.05, because this allows us to make rule
search quite precise and the number of thresholds (that have to be checked) is
not too large from the computational complexity point of view.

5 Evaluation

Experiments were performed with the two hierarchical classifiers (HLM and
RSES-H) described in Section 3.1 (HLM) and Section 4 (RSES-H), their
non-hierarchical counterparts (LM and RSES-O based on rules) and RIONA
as a benchmark classifier. The purpose of the experiment was two fold: first,
we wanted to know whether the hierarchical algorithms improve their non-
hierarchical counterparts. Second, we wanted to know the correspondence be-
tween the degree of improvement and distribution of data.

For this purpose we considered two types of data: real world data and artifi-
cial (or synthetic) data. The former were some popular benchmark datasets from
UCI Machine Learning Repository [9], and some simple statistics are shown in
Table 1. The latter were generated by Handl and Knowles [16]. The generator is
based on a standard cluster model using multivariate normal distributions. We
generated six datasets: three of them have two clusters labeled as two separate
classes (unimodal data), and the remaining three have four clusters grouped
again into two classes (multimodal data). In all cases 20% random noise were
added.

In the experiment each classifier was tested 10 times on each dataset with the
use of 5-fold cross-validation.
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Table 1. General information on the datasets and the 5-fold cross validation success
rate with standard deviation of LM, HLM, RSES-H, RSES-O and RIONA

General Info 5CV success rate
Data

Att Exa Cla LM HLM RSES-O RSES-H RIONA

Anneal 38 798 6 95.7±0.3 96.0±0.4 94.3±0.6 96.2±0.5 92.5
Austral 14 690 2 91.9±0.3 92.0±0.4 86.4±0.5 87.0±0.5 85.7
Auto 25 205 6 73.0±1.5 76.5±1.4 69.0±3.1 73.7±1.7 76.7

Diabetes 8 768 2 70.6±0.6 72.6±0.8 73.8±0.6 73.8±1.2 75.4
Ecoli 7 336 8 79.8±1.0 85.6±0.7 72.4±2.3 76.0±1.7 84.1

German 20 1000 2 69.8±0.6 71.4±0.9 72.2±0.4 73.2±0.9 74.4
Glass 9 214 3 63.5±1.2 71.3±1.2 61.2±2.5 63.4±1.8 66.1
Heart 13 270 2 75.2±1.8 79.0±1.0 83.8±1.1 84.0±1.3 82.3

Hepatitis 19 155 2 77.2±0.7 78.7±1.2 82.6±1.3 81.9±1.6 82.0
Horse-Colic 22 368 2 78.2±0.8 76.3±0.9 85.5±0.5 86.5±0.6 84.6

Iris 4 150 3 95.0±0.4 94.1±0.4 94.9±1.5 95.5±0.8 94.4
Sonar 60 208 2 74.2±1.2 73.7±0.8 74.3±1.8 75.3±2.0 86.1
TTT 9 958 2 94.0±0.7 95.0±0.3 99.0±0.2 99.1±0.2 93.6

Vehicle 18 846 4 69.4±0.5 67.6±0.7 64.2±1.3 66.1±1.4 70.2
Vote 18 232 2 96.4±0.5 95.4±0.5 96.4±0.5 96.5±0.5 95.3
Wine 12 178 3 96.4±0.4 92.6±0.8 90.7±2.2 91.2±1.2 95.4
Yeast 8 1484 10 49.9±0.6 51.3±0.7 50.7±1.2 51.9±0.9 58.9

D20c22n0 20 522 2 85.0±0.8 89.4±0.6 88.9±0.9 88.8±1.2 91.4
D20c22n1 20 922 2 87.6±0.5 89.1±0.5 90.1±0.6 90.1±1.0 86.9
D20c22n2 20 838 2 89.2±0.5 91.2±0.3 90.3±0.4 89.9±0.9 89.4
D20c42n0 20 1370 2 81.4±0.5 85.5±0.3 83.6±1.0 84.4±1.4 90.9
D20c42n1 20 1558 2 80.1±0.3 83.8±0.3 88.5±0.4 88.7±0.6 87.1
D20c42n2 20 1524 2 77.9±0.8 79.0±0.5 79.6±0.7 79.8±1.0 83.2

Average success rate 80.53 82.05 81.41 82.3 83.77

The average results with standard deviations are shown in Table 1. HLM
obtained the higher accuracy than its non-hierarchical counterpart LM on 17
data sets and it lost on 6 data sets. The best improvements were for the data sets
Glass (7.8%) and Ecoli (5.8%). The difference between RSES-H and its non-
hierarchical counterpart RSES-O is even more distinct: RSES-H outperformed
RSES-O on 19 data sets and lost on 3 data sets only. The best improvements
were for the data sets Auto (4.7%) and Ecoli (3.6%).

The supremacy of the hierarchical methods over the non-hierarchical ones
can be also noticed in the total average accuracy: HLM accuracy is 1.5% higher
than LM accuracy and similarly RSES-H accuracy is almost 1% higher than
RSES-O accuracy. On average both hierachical methods ouperformed both non-
hierarchical methods.

The benchmark classifier RIONA has the highest total average accuracy but
the difference to hierarchical methods is much smaller than to non-hierarchical
classifiers. The advantage of RIONA over HLM and RSES-H comes from a few
specific data sets (Sonar, Ecoli and Yeast) where the nearest neighbor component
helps a lot in overcoming the problem of a large number of attributes or classes.
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Table 2. The levels of statistical significance of difference when comparing the hi-
erarchical methods against the non-hierarchical methods: 5 is 99.5%, 4 is 99%, 3 is
97.5%, 2 is 95%, 1 is 90% and 0 is below 90%. Plus indicates that the average accuracy
of a hierarchical method is higher than that of a non-hierarchical method and minus
otherwise.

General Info Statistical significance
Data HLM vs RSES-H vs

Attrib Exampl Classes
LM RSES-O LM RSES-O

Anneal 38 798 6 +3 +5 +5 +5
Austral 14 690 2 +0 +5 −5 +3
Auto 25 205 6 +5 +5 +0 +5

Diabetes 8 768 2 +5 −5 +5 0
Ecoli 7 336 8 +5 +5 −5 +5

German 20 1000 2 +5 −4 +5 +5
Glass 9 214 3 +5 +5 −0 +3
Heart 13 270 2 +5 −5 +5 +0

Hepatitis 19 155 2 +5 −5 +5 −0
Horse-Colic 22 368 2 −5 −5 +5 +5

Iris 4 150 3 −5 −1 +2 +0
Sonar 60 208 2 −0 −0 +1 +0
TTT 9 958 2 +5 −5 +5 +1

Vehicle 18 846 4 −5 +5 −5 +4
Vote 18 232 2 −5 −5 +0 +0
Wine 12 178 3 −5 +4 −5 +0
Yeast 8 1484 10 +5 +1 +5 +3

D20c22n0 20 522 2 +5 +1 +5 −0
D20c22n1 20 922 2 +5 −5 +5 +0
D20c22n2 20 838 2 +5 +5 +3 −0
D20c42n0 20 1370 2 +5 +5 +5 +1
D20c42n1 20 1558 2 +5 −5 +5 +0
D20c42n2 20 1524 2 +5 −3 +5 +0

Wins/Losses quite probable ( > 90% ) 16/5 11/11 16/4 11/0

Wins/Losses certain ( > 99.5% ) 15/5 8/8 13/4 5/0

One could ask whether the differences in accuracy between the hierarchi-
cal and non-hierarchical methods are really significant. To answer this ques-
tion in Table 2 we compared the hierarchical HLM and RSES-H against the
non-hierarchical LM and RSES-O and provided the statistical significance of
differences between the accuracy of classifiers on particular data sets using the
one-tail unpaired Student’s t-test [25].

Comparing HLM against LM (see Figure 1) one can see that for almost all the
data sets the differences are significant. In other words, in 16 cases HLM provided
the statistically significant improvement in accuracy over LM (for 15 data sets
this improvement is practically certain) and the accuracy has significantly fallen
in 5 cases. This confirms the conclusion that, in general, it is worth to apply
hierarchical HLM instead of non-hierarchical LM.
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Fig. 1. The number of data sets where HLM outperforms LM and the number of
datasets where HLM loses in dependence of significance level of accuracy difference

The comparison between HLM and RSES-O does not show supremacy of any
method. However, for some datasets (Australian, Auto, Ecoli and Glass) HLM
provided significantly better results than both RSES-H and RSES-O.

The relation between the results of RSES-H and LM is similar to the relation
HLM vs LM. The differences in accuracy are significant for almost all the data
sets and in most cases RSES-H outperformed LM.

The interesting relation is between the results of RSES-H and RSES-O (see
Figure 2). There is no data set on which RSES-H was significantly worse than
RSES-O. On other hand, in half of cases RSES-H improved significantly RSES-
O. This indicates that the extension of RSES-O to RSES-H is rather stable:
RSES-H keeps the level of the RSES-O accuracy. There are no risk while replac-
ing RSES-O with RSES-H and a significant chance of improving the results.

Another interesting observation can be made when one focuses on artificial
data. In comparison with LM both hierarchical methods provide significant im-
provement on all generated data sets. This indicates that lattice machine does
not deal well with noisy data and both hierarchical methods do it better. There-
fore in cases of noisy data the lattice machine is particularly recommended to
be extended to hierarchical approach.

The different situation is in case of RSES-O. The comparison of both hier-
archical methods with RSES-O on artificial data does not show the significant
supremacy of any method. This suggests that to overcome the problem of noise
the rule optimization used in RSES-O is equally effective as the hierarchical
approach.

The experiments confirmed our original expectation that the performance of
LM and RSES-O can be improved by our hierarchical approach. The cost is
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Fig. 2. The number of data sets where RSES-H outperforms RSES-O and the num-
ber of datasets where RSES-H loses in dependence of significance level of accuracy
difference

some extra time to construct the hierarchy and to test some new objects using
this hierarchy.

The experimental results provide also the hint which hierarchical method to
use in dependence of the expected profit. RSES-H is safer: it usually provides
smaller improvements than HLM but it never worsens the accuracy. Application
of HLM can result in a greater improvement but there is also a higher risk of
worsening the results.

6 Conclusions

In the paper we addressed the problem of balancing between accuracy and uni-
versality in multimodal classification models. The accurate model parts can be
specific and cover part of data space only. On the other hand more general
model parts can lose accuracy. To solve this problem we proposed the hierarchi-
cal approach to multimodal classification. The hierarchical approach introduces
a number of multimodal layers instead of a single one, each with different accu-
racy and universality. Such a hierarchical model tries to classify data with the
most accurate layer and if it fails then it moves through more and more general
layers until an answer is found. Such a hierarchical approach provides a kind of
adaptation to test case difficulty. The proper graduation between the successive
levels allows to classify data with the optimal balance between accuracy and
universality.

The experimental results confirmed that such a hierarchical model is more ef-
fective than one-layer multimodal methods: it gives higher classification
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accuracy. Hierarchical approach guarantees also a certain level of adaptability
to data: it deals well with noise in data.

In future research we plan to develop hierarchical multimodal methods for
incremental learning. Incremental learning requires reconstruction of particular
layers when new examples arrive. In hierarchical model the reconstruction time
of a layer can be reduced by the use of knowledge from the adjoining layers.

The other interesting research direction is the application of a hierarchical rule
model in RIONA. In that classifier rules are used to validate and filter nearest
neighbors (see Section 2.3). The interesting question is whether one can improve
RIONA accuracy still more by replacing the single set of rules with a hierarchical
rule model in the validation step.
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Abstract. In this paper, we propose an arrow decision logic (ADL) for
relational information systems (RIS). The logic combines the main fea-
tures of decision logic (DL) and arrow logic (AL). DL represents and
reasons about knowledge extracted from decision tables based on rough
set theory, whereas AL is the basic modal logic of arrows. The semantic
models of DL are functional information systems (FIS). ADL formulas,
on the other hand, are interpreted in RIS. RIS , which not only specifies
the properties of objects, but also the relationships between objects. We
present a complete axiomatization of ADL and discuss its application to
knowledge representation in multicriteria decision analysis.

Keywords: Arrow logic, decision logic, functional information systems,
multicriteria decision analysis, relational information systems, rough sets.

1 Introduction

The rough set theory proposed by Pawlak [25] provides an effective tool for
extracting knowledge from data tables. To represent and reason about extracted
knowledge, a decision logic (DL) is proposed in Pawlak [26]. The semantics of the
logic is defined in a Tarskian style through the notions of models and satisfaction.
While DL can be considered as an instance of classical logic in the context of
data tables, different generalizations of DL corresponding to some non-classical
logics are also desirable from the viewpoint of knowledge representation. For
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example, to deal with uncertain or incomplete information, some generalized
decision logics have been proposed [7,22,23,34,35].

In rough set theory, objects are partitioned into equivalence classes based on
their attribute values, which are essentially functional information associated
with the objects. Though many databases contain only functional information
about objects, data about the relationships between objects has become increas-
ingly important in decision analysis. A remarkable example is social network
analysis, in which the principal types of data are attribute data and relational
data.

To represent attribute data, a data table in rough set theory consists of a set
of objects and a set of attributes, where each attribute is considered as a function
from the set of objects to the domain of values for the attribute. Hence, such
data tables are also called functional information systems (FIS), and rough set
theory can be viewed as a theory of functional granulation. Recently, granulation
based on relational information between objects, called relational granulation,
has been studied by Liau and Lin [21]. To facilitate further study of relational
granulation, it is necessary to represent and reason about data in relational
information systems (RIS).

In FIS, the basic entities are objects, while DL formulas describe the properties
of such objects, thus, the truth values of DL formulas are evaluated with respect
to these objects. To reason about RIS, we need a language that can be interpreted
in the domain of pairs of objects, since relations can be seen as properties of such
pairs. Arrow logic (AL) [24,33] fulfills this need perfectly. Hence, in this paper,
we propose arrow decision logic (ADL), which combines the main features of DL
and AL, to represent the decision rules induced from RIS. The atomic formulas of
ADL have the same descriptor form as those in DL; while the formulas of ADL
are interpreted with respect to each pair of objects, just as in the pair frame
of AL [24,33]. The semantic models of ADL are RIS; thus, ADL can represent
knowledge induced from systems containing relational information.

The remainder of this paper is organized as follows. In Section 2, we review FIS
in rough set theory and give a precise definition of RIS. We study the relation-
ship between these two kinds of information system and present some practical
examples. In Section 3, we review DL and AL to lay the foundation for ADL.
In Section 4, we present the syntax and semantics of ADL. A complete axioma-
tization of ADL based on the combination of DL and AL axiomatic systems is
presented. In Section 5, we define some quantitative measures for the rules of
ADL and discuss the application of ADL to data analysis. Finally, we present
our conclusions in Section 6.

2 Information Systems

Information systems are fundamental to rough set theory, in which the approx-
imation space can be derived from attribute-value information systems [26]. In
this section, we review the functional information systems used in the orig-
inal rough set theory and propose a generalization of it, namely, relational
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information systems. We present the algebraic relationship between these two
kinds of information system, and several practical examples are employed to
illustrate the algebraic notions.

2.1 Functional and Relational Information Systems

In data mining problems, data is usually provided in the form of a data table,
which is formally defined as an attribute-value information system and taken as
the basis of the approximation space in rough set theory [26]. To emphasize the
fact that each attribute in an attribute-value system is associated with a function
on the set of objects, we call such systems functional information systems.

Definition 1. A functional information system (FIS)1 is a quadruple

Tf = (U, A, {Vi | i ∈ A}, {fi | i ∈ A}),

where

– U is a nonempty set, called the universe,
– A is a nonempty finite set of attributes,
– for each i ∈ A, Vi is the domain of values for i, and
– for each i ∈ A, fi : U → Vi is a total function.

In an FIS, the information about an object is consisted of the values of its at-
tributes. Thus, given a subset of attributes B ⊆ A, we can define the information
function associated with B as InfB : U →∏i∈B Vi,

InfB(x) = (fi(x))i∈B . (1)

Example 1. One of the most popular applications in data mining is association
rule mining from transaction databases [2,18]. A transaction database consists
of a set of transactions, each of which includes the number of items purchased
by a customer. Each transaction is identified by a transaction id (tid). Thus, a
transaction database is a natural example of an FIS, where

– U : the set of transactions, {tid1, tid2, · · · , tidn};
– A: the set of possible items to be purchased;
– Vi: {0, 1, 2, · · · , maxi}, where maxi is the maximum quantity of item i; and
– fi : U → Vi describes the transaction details of item i such that fi(tid) is

the quantity of item i purchased in tid.

Example 2. In this paper, we take an example of multicriteria decision analysis
(MCDA) as a running example [8]. Assume that Table 1 is a summary of the
reviews of ten papers submitted to a journal. The papers are rated according to
four criteria:

– o: originality,
– p: presentation,
– t: technical soundness, and
– d: overall evaluation (the decision attribute).

1 Originally called information systems, data tables, knowledge representation sys-
tems, or attribute-value systems in rough set theory.
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Table 1. An FIS of the reviews of 10 papers

U \ A o p t d

1 4 4 3 4
2 3 2 3 3
3 4 3 2 3
4 2 2 2 2
5 2 1 2 1
6 3 1 2 1
7 3 2 2 2
8 4 1 2 2
9 3 3 2 3
10 4 3 3 3

Thus, in this FIS, we have

– U = {1, 2, · · · , 10},
– A = {o, p, t, d},
– Vi = {1, 2, 3, 4} for i ∈ A, and
– fi is specified in Table 1.

Though much information associated with individual objects is given in a
functional form, it is sometimes more natural to represent information about
objects in a relational form. For example, in a demographic database, it is more
natural to represent the parent-child relationship as a relation between individ-
uals, instead of an attribute of the parent or the children. In some cases, it may
be necessary to use relational information simply because the exact values of
some attributes may not be available. For example, we may not know the exact
ages of two individuals, but we do know which one is older. These considerations
motivate the following definition of an alternative kind of information system,
called an RIS.

Definition 2. A relational information system (RIS) is a quadruple

Tr = (U, A, {Hi | i ∈ A}, {ri | i ∈ A}),

where

– U is a nonempty set, called the universe,
– A is a nonempty finite set of attributes,
– for each i ∈ A, Hi is the set of relational indicators for i, and
– for each i ∈ A, ri : U × U → Hi is a total function.

A relational indicator in Hi is used to indicate the extent or degree to which two
objects are related according to an attribute i. Thus, ri(x, y) denotes the extent
to which x is related to y on the attribute i. When Hi = {0, 1}, then, for any
x, y ∈ U , x is said to be i-related to y iff ri(x, y) = 1.
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Example 3. Continuing with Example 2, assume that the reviewer is asked to
compare the quality of the ten papers, instead of assigning scores to them. Then,
we may obtain an RIS Tr = (U, A, {Hi | i ∈ A}, {ri | i ∈ A}), where U and A
are defined as in Example 2, Hi = {0, 1}, and ri : U × U → {0, 1} is defined by

ri(x, y) = 1 ⇔ fi(x) ≥ fi(y)

for all i ∈ A.

2.2 Relationship Between Information Systems

Before exploring the relationship between FIS and RIS, we introduce the notion
of information system morphism (IS-morphism).

Definition 3

1. Let Tf = (U, A, {Vi | i ∈ A}, {fi | i ∈ A}), and T ′
f = (U ′, A′, {V ′

i | i ∈
A′}, {f ′

i | i ∈ A′}) be two FIS; then an IS-morphism from Tf to T ′
f is a

(|A| + 2)-tuple of functions

σ = (σu, σa, (σi)i∈A)

such that σu : U → U ′, σa : A → A′ and σi : Vi → Vσa(i) (i ∈ A) satisfy

f ′
σa(i)(σu(x)) = σi(fi(x)) (2)

for all x ∈ U and i ∈ A.
2. Let Tr = (U, A, {Hi | i ∈ A}, {ri | i ∈ A}), and T ′

r = (U ′, A′, {H ′
i | i ∈

A′}, {r′i | i ∈ A′}) be two RIS; then an IS-morphism from Tr to T ′
r is a

(|A| + 2)-tuple of functions

σ = (σu, σa, (σi)i∈A)

such that σu : U → U ′, σa : A → A′ and σi : Hi → Hσa(i) (i ∈ A) satisfy

r′σa(i)(σu(x), σu(y)) = σi(ri(x, y)) (3)

for all x, y ∈ U and i ∈ A.
3. If all functions in σ are 1-1 and onto, then σ is called an IS-isomorphism.

An IS-morphism stipulates the structural similarity between two information
systems of the same kind. Let T and T ′ be two such systems. Then we write
T ⇒ T ′ if there exists an IS-morphism from T to T ′, and T ' T ′ if there exists an
IS-isomorphism from T to T ′. Note that ' is an equivalence relation, whereas
⇒ may be asymmetrical. Sometimes, we need to specify the properties of an
IS-morphism. In such cases, we write T ⇒p1,p2 T ′ to indicate that there exists
an IS-morphism σ from T to T ′ such that σu and σa satisfy properties p1 and
p2 respectively. In particular, we need the notation T ⇒id,onto T ′, which means
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that σu is the identity function of U (i.e., σu(x) = id(x) = x for all x ∈ U) and
σa is an onto function.

The relational information in an RIS may come from different sources. One
of the most important sources may be the functional information. For various
reasons, we may want to represent relational information between objects based
on a comparison of some of the objects’ attribute values. If all the relational
information of an RIS is derived from an FIS, then it is said that the former is
an embedment of the latter. Formally, this leads to the following definition.

Definition 4. Let Tf = (U, A1, {Vi | i ∈ A1}, {fi | i ∈ A1}) be a FIS, and
Tr = (U, A2, {Hi | i ∈ A2}, {ri | i ∈ A2}) be an RIS; then, an embedding from
Tf to Tr is a |A2|-tuple of pairs

ε = ((Bi, Ri))i∈A2 ,

where each Bi ⊆ A1 is nonempty and each Ri :
∏

j∈Bi
Vj ×

∏
j∈Bi

Vj → Hi

satisfies
ri(x, y) = Ri(InfBi(x), InfBi(y)) (4)

for all x, y ∈ U . Tr is said to be an embedment of Tf if there exists an embedding
from Tf to Tr.

Note that the embedding relationship is only defined for two information systems
with the same universe. Intuitively, Tr is an embedment of Tf if all relational
informational in Tr is based on a comparison of some attribute values in Tf .
Thus, for each attribute i in Tr, we can find a subset of attributes Bi in Tf

such that the extent to which x is i-related to y is completely determined by
comparing InfBi(x) and InfBi(y) in some particular way. We write Tf � Tr if
Tr is an embedment of Tf .

Example 4. [Pairwise comparison tables] Let Tf denote the FIS in Exam-
ple 2, and Tr = (U, A, {Hi | i ∈ A}, {ri | i ∈ A}), where Hi = {−3,−2,−1, 0, 1, 2,
3}, and ri is defined as ri(x, y) = fi(x)− fi(y) for all x, y ∈ U and i ∈ A. Then,
the embedding from Tf to Tr becomes

(({o}, Ro), ({p}, Rp), ({t}, Rt), ({d}, Rd)),

where Ri : Vi × Vi → Hi is defined as

Ri(v1, v2) = v1 − v2

for all i ∈ A. The resultant Tr is an instance of the pairwise comparison table
(PCT) used in MCDA [10,11,12,13,14,15,16,32]. A similar embedment is used to
define D-reducts (distance reducts) in [28], where a relationship between objects
x and y exists iff the distance between fi(x) and fi(y) is greater than a given
threshold.

Example 5. [Dimension reduction and information compression] If Tf =
(U, A1, {Vi | i ∈ A1}, {fi | i ∈ A1}) is a high dimensional FIS, i.e., |A1| is very
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large, then we may want to reduce the dimension of the information system.
Furthermore, for security reasons, we may want to compress information in the
FIS. An embedment based on rough set theory that can achieve both dimension
reduction and information compression is as follows. First, the set of attributes,
A1, is partitioned into k mutually disjoint subsets, A1 = B1 ∪ B2 ∪ · · · ∪ Bk,
where k is substantially smaller than |A1|. Second, for 1 ≤ i ≤ k, define
Ri :

∏
j∈Bi

Vj ×
∏

j∈Bi
Vj → {0, 1} as Ri(vi,v′

i) = 1 iff vi = v′
i, where

vi,v′
i ∈
∏

j∈Bi
Vj . Thus, ((Bi, Ri)1≤i≤k) is an embedding from Tf to Tr =

(U, A2, {Hi | i ∈ A2}, {ri | i ∈ A2}), where A2 = {1, 2, · · · , k}, Hi = {0, 1}, and
ri(x, y) = 1 iff InfBi(x) = InfBi(y). Note that ri is actually the characteristic
function of the Bi-indiscernibility relation in rough set theory. Consequently,
the dimension of the information system is reduced to k so that only the indis-
cernibility information with respect to some subsets of attributes is kept in the
RIS.

Example 6. [Discernibility matrices] In [29], discernibility matrices are de-
fined to analyze the complexity of many computational problems in rough set
theory. This is especially useful in the computation of reduct in rough set theory.
According to [29], given an FIS Tf = (U, A1, {Vi | i ∈ A1}, {fi | i ∈ A1}), its
discernibility matrix is a |U | × |U | matrix D such that

Dxy = {i ∈ A1 | fi(x) �= fi(y)}

for any x, y ∈ U . In other words, the (x, y) entry of the discernibility matrix
is the set of attributes that can discern between x and y. More generally, we
can define a discernibility matrix D(B) with respect to any subset of attributes,
B ⊆ A1, such that

D(B)xy = {i ∈ B | fi(x) �= fi(y)}
for any x, y ∈ U . Let B1, · · · , Bk be a sequence of subsets of attributes. Then,
the sequence of discernibility matrices, D(B1) · · · , D(Bk), can be combined as an
RIS. The RIS becomes an embedment of Tf by the embedding ((Bi, Ri)1≤i≤k),
such that Ri :

∏
j∈Bi

Vj ×
∏

j∈Bi
Vj → 2A1 is defined by

Ri(vi,v′
i) = {j ∈ Bi | vi(j) �= v′

i(j)},

where v(j) denotes the j-component of the vector v.

Next, we show that the embedding relationship is preserved by IS-morphism
transformation in some conditions. In the following theorem and corollary, we
assume that Tf , T ′

f , Tr, and T ′
r have the same universe U . Thus,

Tf = (U, A1, {Vi | i ∈ A1}, {fi | i ∈ A1}),

T ′
f = (U, A′

1, {V ′
i | i ∈ A′

1}, {f ′
i | i ∈ A′

1}),
Tr = (U, A2, {Hi | i ∈ A2}, {ri | i ∈ A2}),
T ′

r = (U, A′
2, {H ′

i | i ∈ A′
2}, {r′i | i ∈ A′

2}).
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Theorem 1

1. Tf � Tr and Tr ⇒id,onto T ′
r implies Tf � T ′

r.
2. Tf � Tr and T ′

f ⇒id,onto Tf implies T ′
f � Tr.

Proof. Let ε = ((Bi, Ri))i∈A2 be an embedding from Tf to Tr.

1. If σ = (id, σa, (σi)i∈A2) is an IS-morphism from Tr to T ′
r such that σa is an

onto function, then for each j ∈ A′
2, we can choose an arbitrary ij ∈ A2 such

that σa(ij) = j. Let B′
j and R′

j denote Bij and σij ◦ Rij respectively, then
ε′ = ((B′

j , R
′
j))j∈A′

2
is an embedding from Tf to T ′

r. Indeed, by the definition
of σ and ε, we have, for all j ∈ A′

2,

r′j(x, y) = r′σa(ij)
(σu(x), σu(y)) (σu = id, σa(ij) = j)

= σij (rij (x, y)) (Eq. 3)
= σij (Rij (InfBij

(x), InfBij
(y))) (Eq. 4)

= R′
j(InfB′

j
(x), InfB′

j
(y))) (R′

j = σij ◦ Rij )

2. If σ = (id, σa, (σi)i∈A′
1
) is an IS-morphism from T ′

f to Tf such that σa is
an onto function, then for each j ∈ A1, we can choose an arbitrary kj ∈ A′

1

such that σa(kj) = j. For each i ∈ A2, let B′
i = {kj | j ∈ Bi} and define

R′
i :
∏

kj∈B′
i
V ′

kj
×
∏

kj∈B′
i
V ′

kj
→ Hi by

R′
i((v

′
kj

)j∈Bi , (w
′
kj

)j∈Bi ) = Ri((σkj (v
′
kj

))j∈Bi , (σkj (w
′
kj

))j∈Bi ). (5)

Then, ε′ = ((B′
i, R

′
i))i∈A2 is an embedding from T ′

f to Tr. This can be verified
for all i ∈ A2 as follows:

ri(x, y) = Ri(InfBi(x), InfBi(y)) (Eq. 4)
= Ri((fj(x))j∈Bi , (fj(y))j∈Bi ) (Eq. 1)
= Ri((σkj (f ′

kj
(x)))j∈Bi , (σkj (f ′

kj
(y)))j∈Bi ) (Eq. 2)

= R′
i((f

′
kj

(x))kj∈B′
i
, (f ′

kj
(y))kj∈B′

i
) (Eq. 5; B′

i, def.)
= R′

i(InfB′
i
(x), InfB′

i
(y)) (Eq. 1)

��

The theorem can be represented by the following commutative diagram notation
commonly used in category theory [3].

T ′
f

⇒id,onto
> Tf

Tr

�
∨

⇒id,onto
>

� >

T ′
r

�

>

When the IS-morphism between two systems is an IS-isomorphism, we can derive
the following corollary.

Corollary 1. If Tf � Tr, Tf ' T ′
f and Tr ' T ′

r, then T ′
f � T ′

r
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The commutative diagram of the corollary is:

Tf
�

> Tr

T ′
f

�

�
> T ′

r

�

As shown in Example 5, an RIS may contain a summary of information about
an FIS. Therefore, the RIS can serve as a tool for information summarization.
If Tf � Tr, then the information in Tr is less specific than that in Tf , i.e.,
the information is reduced. If as much information as possible is kept during
the reduction, the embedding is called a trivial embedding. Formally, a trivial
embedding from Tf = (U, A1, {Vi | i ∈ A1}, {fi | i ∈ A1}) to Tr = (U, A2, {Hi |
i ∈ A2}, {ri | i ∈ A2}) is an embedding ε = ((Bi, Ri))i∈A2 such that each Ri

is a 1-1 function. Tr is called a trivial embedment of Tf if there exists a trivial
embedding from Tf to Tr. A trivial embedment plays a similar role to the initial
algebra [6] in a class of RIS with the same attributes. This is shown in the next
theorem, which easily follows from the definitions.

Theorem 2. Let Tf = (U, A1, {Vi | i ∈ A1}, {fi | i ∈ A1}), Tr = (U, A2, {Hi |
i ∈ A2}, {ri | i ∈ A2}), and T ′

r = (U, A2, {H ′
i | i ∈ A2}, {r′i | i ∈ A2}) be

information systems. If ε = ((Bi, Ri))i∈A2 is a trivial embedding from Tf to Tr

and ε′ = ((Bi, R
′
i))i∈A2 is an embedding from Tf to T ′

r, then Tr ⇒ T ′
r.

Since embedding is an information reduction operation, many FIS may be em-
bedded into the same RIS. Consequently, in general, it is not easy to recover an
FIS that has been embedded into a given RIS. However, by applying the tech-
niques of constraint solving, we can usually find possible candidates that have
been embedded into a given RIS. More specifically, if the universe, the set of at-
tributes, and the domain of values for each attribute of an FIS are known, then,
given an embedding and the resultant embedded RIS, the problem of finding
the FIS that is embedded into the given RIS is a constraint satisfaction problem
(CSP). The following example illustrates this point.

Example 7. Let U = {1, 2, 3, 4, 5, 6}, A = {a, s}, Va = {1, 2, · · · , 120}, and Vs =
{M, F} be, respectively, the universe, the set of attributes, and the domains of
values for attributes a and s, where a denotes age and s denotes sex. Assume
the RIS given in Table 2 results from an embedding (({a}, Ra), ({s}, Rs)), where
Ri(v1, v2) = 1 iff v1 = v2.

Then, to find an FIS Tf = (U, A, {Vi | i ∈ A}, {fi | i ∈ A}) such that the RIS
is the embedment of Tf by the above-mentioned embedding, we have to solve
the following finite domain CSP, where vij is a variable denoting the value fj(i)
to be found:

via ∈ {1, 2, · · · , 120}, vis ∈ {M, F}, 1 ≤ i ≤ 6,
v1a = v2a, v3a = v4a, v5a = v6a,
via �= vja, (i, j) �= (1, 2), (3, 4), or (5, 6),
v1s = v6s �= v2s = v3s = v4s = v5s.
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Table 2. AN RIS obtained from a given embedding

a 1 2 3 4 5 6

1 1 1 0 0 0 0
2 1 1 0 0 0 0
3 0 0 1 1 0 0
4 0 0 1 1 0 0
5 0 0 0 0 1 1
6 0 0 0 0 1 1

s 1 2 3 4 5 6

1 1 0 0 0 0 1
2 0 1 1 1 1 0
3 0 1 1 1 1 0
4 0 1 1 1 1 0
5 0 1 1 1 1 0
6 1 0 0 0 0 1

3 Decision Logic and Arrow Logic

In the previous section, we demonstrated that FIS and RIS are useful formalisms
for data representation. However, to represent and reason about knowledge ex-
tracted from information systems, we need a logical language. For FIS, Pawlak
[26] proposed a decision logic (DL), so-called because it is particularly useful for
a special kind of FIS, called decision tables. A decision table is an FIS whose set
of attributes can be partitioned into condition and decision attributes. Decision
rules that relate the condition and the decision attributes can be derived from
such tables by data analysis. A rule is then represented as an implication of the
formulas of the logic.

Since relations can be seen as properties of pairs of objects, to reason about
RIS, we need a language that can be interpreted in the domain of pairs of objects.
Arrow logic (AL) language [24,33] is designed to describe all things that may
be represented in a picture by arrows. Therefore, it is an appropriate tool for
reasoning about RIS.

In this section, we review the basic syntax and semantics of both DL and AL
in order to lay the foundation for the development of arrow decision logic.

3.1 Decision Logic (DL)

The basic alphabet of DL consists of a finite set of attribute symbols, A; and for
i ∈ A, a finite set of value symbols, Vi. An atomic formula of DL is a descriptor,
(i, v), where i ∈ A and v ∈ Vi. The set of DL well-formed formulas (wff) is the
smallest set that contains the atomic formulas and is closed under the Boolean
connectives ¬ and ∨. If ϕ and ψ are wffs of DL, then ϕ −→ ψ is a rule in DL,
where ϕ is called the antecedent of the rule and ψ the consequent. As usual, we
abbreviate ¬ϕ ∨ ψ as ϕ ⊃ ψ, ¬(¬ϕ ∨ ¬ψ) as ϕ ∧ ψ, and (ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ) as
ϕ ≡ ψ.

An interpretation of a given DL is an FIS Tf = (U, A, {Vi | i ∈ A}, {fi |
i ∈ A}) such that A = A and for every i ∈ A, Vi = Vi. Thus, by somewhat
abusing the notation, we usually denote an atomic formula as (i, v), where i ∈ A
and v ∈ Vi if the FIS is clear from the context. Intuitively, each element in the
universe of an FIS corresponds to a data record; and an atomic formula, which
is in fact an attribute-value pair, describes the value of some attribute in the
data record. Thus, the atomic formulas (and therefore the wffs) can be verified
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or falsified in each data record. This yields a satisfaction relation between the
universe and the set of wffs.

Definition 5. Given a DL and an interpretation FIS Tf = (U, A, {Vi | i ∈
A}, {fi | i ∈ A}), the satisfaction relation |=Tf

between U and the wffs of DL is
defined inductively as follows (the subscript Tf is omitted for brevity).

1. x |= (i, v) iff fi(x) = v,
2. x |= ¬ϕ iff x �|= ϕ,
3. x |= ϕ ∨ ψ iff x |= ϕ or x |= ψ.

If ϕ is a DL wff, the set mTf
(ϕ) defined by

mTf
(ϕ) = {x ∈ U | x |= ϕ} (6)

is called the meaning set of the formula ϕ in Tf . If Tf is understood, we simply
write m(ϕ).

A formula ϕ is said to be valid in Tf , written as |=Tf
ϕ, if and only if mTf

(ϕ) = U .
That is, ϕ is satisfied by all individuals in the universe. If ϕ is valid in Tf , then
Tf is a model of ϕ. We write |= ϕ if ϕ is valid in all interpretations.

3.2 Arrow Logic (AL)

AL is the basic modal logic of arrows [24,33]. An arrow can represent a state
transition in a program’s execution, a morphism in category theory, an edge in
a directed graph, etc. In AL, an arrow is an abstract entity; however, we can
usually interpret it as a concrete relationship between two objects, which results
in a pair-frame model [24,33]. We now present the syntax and semantics of AL.

The basic alphabet of AL consists of a countable set of propositional sym-
bols, the Boolean connectives ¬ and ∨, the modal constant δ, the unary modal
operator ⊗, and the binary modal operator ◦. The set of AL wffs is the small-
est set containing the propositional symbols and δ, closed under the Boolean
connectives ¬ and ∨, and satisfying

– if ϕ is a wff, then ⊗ϕ is a wff too;
– if ϕ and ψ are wffs, then ϕ ◦ ψ is also a wff.

In addition to the standard Boolean connectives, we also abbreviate ¬⊗¬ϕ and
¬(¬ϕ ◦ ¬ψ) as ⊗ϕ and ϕ◦ψ respectively.

Semantically, these wffs are interpreted in arrow models.

Definition 6

1. An arrow frame is a quadruple F = (W, C, R, I) such that C ⊆ W ×W ×W ,
R ⊆ W ×W and I ⊆ W .

2. An arrow model is a pair M = (F, π), where F = (W, C, R, I) is an arrow
frame and π is a valuation that maps propositional symbols to subsets of W .
An element in W is called an arrow in the model M.
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3. The satisfaction of a wff ϕ on an arrow w of M, denoted by w |=M ϕ (as
usual, the subscript M can be omitted), is inductively defined as follows:
(a) w |= p iff w ∈ π(p) for any propositional symbol p,
(b) w |= δ iff w ∈ I,
(c) w |= ¬ϕ iff w �|= ϕ,
(d) w |= ϕ ∨ ψ iff w |= ϕ or x |= ψ,
(e) w |= ϕ ◦ ψ iff there exist s, t such that (w, s, t) ∈ C, s |= ϕ, and t |= ψ,
(f) w |= ⊗ϕ iff there is a t with (w, t) ∈ R and t |= ϕ.

Intuitively, in the arrow frame (W, C, R, I), W can be regarded as the set of
edges of a directed graph; I denotes the set of identity arrows2; (w, s) ∈ R if s
is a reversed arrow of w; and (w, s, t) ∈ C if w is an arrow composed of s and t.
This intuition is reflected in the following definition of pair frames.

Definition 7. An arrow frame F = (W, C, R, I) is a pair frame if there exists a
set U such that W ⊆ U × U and

1. for x, y ∈ U , if (x, y) ∈ I then x = y,
2. for x1, x2, y1, y2 ∈ U , if ((x1, y1), (x2, y2)) ∈ R, then x1 = y2 and y1 = x2,
3. for x1, x2, x3, y1, y2, y3 ∈ U , if ((x1, y1), (x2, y2), (x3, y3)) ∈ C, then x1 = x2,

y2 = x3, and y1 = y3.

An arrow model M = (F, π) is called a pair model if F is a pair frame. A pair
model is called a (full) square model if the set of arrows W = U × U .

4 Arrow Decision Logic

To represent rules induced from an RIS, we propose arrow decision logic (ADL),
derived by combining the main features of AL and DL. In this section, we in-
troduce the syntax and semantics of ADL. The atomic formulas of ADL are the
same as those in DL; while the formulas of ADL are interpreted with respect to
each pair of objects, as in the pair frames of AL [24,33].

4.1 Syntax and Semantics of ADL

An atomic formula of ADL is a descriptor of the form (i, h), where i ∈ A, h ∈ Hi,
A is a finite set of attribute symbols, and for each i ∈ A, Hi is a finite set of
relational indicator symbols. In addition, the wffs of ADL are defined by the
formation rules for AL, while the definition of derived connectives is the same
as that in AL.

An interpretation of a given ADL is an RIS, Tr = (U, A, {Hi | i ∈ A}, {ri |
i ∈ A}), which can be seen as a square model of AL. Thus, the wffs of ADL are
evaluated in terms of a pair of objects. More precisely, the satisfaction of a wff
with respect to a pair of objects (x, y) in Tr is defined as follows (again, we omit
the subscript Tr):

2 An identity arrow is an arrow that has the same starting point and endpoint.
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1. (x, y) |= (i, h) iff ri(x, y) = h,
2. (x, y) |= δ iff x = y,
3. (x, y) |= ¬ϕ iff (x, y) �|= ϕ,
4. (x, y) |= ϕ ∨ ψ iff (x, y) |= ϕ or (x, y) |= ψ,
5. (x, y) |= ⊗ϕ iff (y, x) |= ϕ,
6. (x, y) |= ϕ ◦ ψ iff there exists z such that (x, z) |= ϕ and (z, y) |= ψ.

Let Σ be a set of ADL wffs; then, we write (x, y) |= Σ if (x, y) |= ϕ for all ϕ ∈ Σ.
Also, for a set of wffs, Σ, and a wff, ϕ, we say that ϕ is an ADL consequence of
Σ, written as Σ |= ϕ, if for every interpretation Tr and x, y in the universe of
Tr, (x, y) |= Σ implies (x, y) |= ϕ.

4.2 Axiomatization

The ADL consequence relation can be axiomatized by integrating the axiomati-
zation of AL and specific axioms of DL. As shown in [24,33], the AL consequence
relations with respect to full square models can not be finitely axiomatized by
an orthodox derivation system. To develop a complete axiomatization of AL,
an unorthodox inference rule based on a difference operator D is added to the
AL derivation system. The use of such unorthodox rules was first proposed by
Gabbay [9]. The operator is defined in shorthand as follows:

Dϕ = * ◦ ϕ ◦ ¬δ ∨ ¬δ ◦ ϕ ◦ *,

where * denotes any tautology. According to the semantics, Dϕ is true in a pair
(x, y) iff there exists a pair distinct from (x, y) such that ϕ is true in that pair.

The complete axiomatization of ADL consequence relations is presented in
Figure 2, where ϕ, ψ, ϕ′, ψ′, and χ are meta-variables denoting any wffs of ADL.
The axiomatization consists of three parts: the propositional logic axioms; the
DL and AL axioms; and the inference rules, including the classical Modus Ponens
rule, the universal generalization rule for modal operators, and the unorthodox
rule based on D. The operator D is also utilized in DL3 to spread the axioms
DL1 and DL2 to all pairs of objects. DL3 thus plays a key role in the proof of
the completeness of the axiomatization. DL1 and DL2 are exactly the specific
axioms of DL in [26]. An additional axiom

¬(i, h) ≡
∨

h′∈Hi,h′ �=h

(i, h′)

is presented in [26], but it is redundant. The AL axioms and inference rules can
be found in [24], where AL4 is split into two parts and an extra axiom

ϕ ◦ (ψ ◦ (δ ∧ χ)) ⊃ (ϕ ◦ ψ) ◦ (δ ∧ χ)

is given. The extra axiom is called the weak associativity axiom, since it is weaker
than the associativity axiom AL5. We do not need such an axiom, as it is an
instance of AL5. The only novel axiom in our system is DL3. Though it is
classified as a DL axiom, it is actually a connecting axiom between DL and AL.
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An ADL derivation is a finite sequence ϕ1, · · · , ϕn such that every ϕi is either
an instance of an axiom or obtainable from ϕ1, · · · , ϕi−1 by an inference rule. The
last formula ϕn in a derivation is called an ADL theorem. A wff ϕ is derivable in
ADL from a set of wffs Σ if there are ϕ1, . . . , ϕn in Σ such that (ϕ1∧. . .∧ϕn) ⊃ ϕ
is an ADL-theorem. We use � ϕ to denote that ϕ is an ADL theorem and Σ � ϕ
to denote that ϕ is derivable in ADL from Σ. Also, we write Σ �AL ϕ if ϕ is
derivable in ADL from Σ without using the DL axioms.

– Axioms:
1. P: all tautologies of propositional calculus
2. DL axioms:

(a) DL1: (i, h1) ⊃ ¬(i, h2), for any i ∈ A, h1, h2 ∈ Hi and h1 = h2

(b) DL2: ∨h∈Hi(i, h), for any i ∈ A
(c) DL3: ¬D¬ϕ0, where ϕ0 is an instance of DL1 or DL2

3. AL axioms:
(a) AL0 (Distribution, DB):

i. (ϕ ⊃ ϕ′)◦ψ ⊃ (ϕ◦ψ ⊃ ϕ′◦ψ)
ii. ϕ◦(ψ ⊃ ψ′) ⊃ (ϕ◦ψ ⊃ ϕ◦ψ′)
iii. ⊗(ϕ ⊃ ψ) ⊃ (⊗ϕ ⊃ ⊗ψ)

(b) AL1: ϕ ≡ ⊗⊗ ϕ
(c) AL2: ⊗(ϕ ◦ ψ) ⊃ ⊗ψ ◦ ⊗ϕ
(d) AL3: ⊗ϕ ◦ ¬(ϕ ◦ ψ) ⊃ ¬ψ
(e) AL4: ϕ ≡ ϕ ◦ δ
(f) AL5: ϕ ◦ (ψ ◦ χ) ⊃ (ϕ ◦ ψ) ◦ χ

– Rules of Inference:

1. R1 (Modus Ponens, MP):
ϕ ϕ ⊃ ψ

ψ

2. R2 (Universal Generalization, UG):
ϕ

⊗ϕ

ϕ

ϕ◦ψ
ϕ

ψ◦ϕ

3. R3 (Irreflexivity rule, IRD):
(p ∧ ¬Dp) ⊃ ϕ

ϕ
provided that p is an atomic

formula not occurring in ϕ

Fig. 1. The axiomatic system for ADL

The next theorem shows that the axiomatic system is sound and complete
with respect to the ADL consequence relations.

Theorem 3. For any set of ADL wffs Σ ∪ {ϕ}, we have Σ |= ϕ iff Σ � ϕ.

Proof

1. Soundness: To show that Σ � ϕ implies Σ |= ϕ, it suffices to show that
all ADL axioms are valid in any ADL interpretation and that the inference
rules preserve validity. The fact that AL axioms are valid and the inference
rules preserve validity follows from the soundness of AL, since any ADL
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interpretation is an instance of a square model. Furthermore, it is clear that
DL axioms are valid in any ADL interpretation.

2. Completeness: To prove completeness, we first note that the set of instances
of DL axioms is finite. Let us denote χ by the conjunction of all instances
of DL axioms and χ0 by the conjunction of all instances of axioms DL1
and DL2. If Σ �� ϕ, then Σ ∪ {χ} ��AL ϕ. Thus, by the completeness of
AL, we have a pair model M = (U × U, C, R, I, π) and x, y ∈ U such that
(x, y) |=M Σ, (x, y) |=M χ, and (x, y) |=M ¬ϕ. Next, we show that M
can be transformed into an ADL interpretation. From (x, y) |=M χ, we can
derive (z, w) |=M χ0 for all z, w ∈ U by DL3. Thus, for every z, w ∈ U and
i ∈ A, there exists exactly one hi,z,w ∈ Hi such that (z, w) |=M (i, hi,z,w).
Consequently, Tr = (U, A, {Hi | i ∈ A}, {ri | i ∈ A}), where ri(z, w) = hi,z,w

for z, w ∈ U and i ∈ A, is an ADL interpretation such that (x, y) |=Tr Σ
and (x, y) |=Tr ¬ϕ. Thus,Σ �� ϕ implies Σ �|= ϕ. ��

5 Discussion and Applications

5.1 Discussion

Initially, it seems that an RIS is simply an instance of FIS whose universe consists
of pairs of objects. However, there is a subtle difference between RIS and FIS. In
FIS, the universe is an unstructured set, whereas in RIS, an implicit structure
exists in the universe. The structure is made explicit by modal operators in ADL.
For example, if (x, y) is a pair in an RIS, then (x, y) and (y, x) are considered
to be two independent objects from the perspective of FIS; however, from the
viewpoint of RIS, they are the converse of each other.

The difference between FIS and RIS is also reflected by the definition of IS-
morphisms. When σ is an IS-morphism between two RIS, then, for a pair of
objects (x, y), if (x, y) is mapped to (z, w), then (y, x) must be mapped to (w, z)
at the same time. However, if these two RIS’s are considered simply as FIS’s
with pairs of objects in their universes and σ is an IS-morphism between these
two FIS’s, then it is possible that σu((x, y)) = (z1, w1) and σu((y, x)) = (z2, w2)
without z2 = w1 and/or w2 = z1. In other words, the images of (x, y) and
(y, x) may be totally independent if we simply view an RIS as a kind of FIS.
Therefore, even though FIS and RIS are very similar in appearance, they are
mathematically and conceptually different.

In fact, FIS and RIS usually represent different aspects of the information
about the objects. One of the main purpose of this paper is to consider the rela-
tional structures of FIS. Sometimes, both functional and relational information
about objects must be represented. Thus, to achieve full generality, we can com-
bine these two kinds of information systems. Let us define a hybrid information
system (HIS) as

(U, A ∪B, {Vi | i ∈ A}, {Hi | i ∈ B}, {fi | i ∈ A}, {ri | i ∈ B})

such that (U, A, {Vi | i ∈ A}, {fi | i ∈ A}) is an FIS and (U, B, {Hi | i ∈
B}, {ri | i ∈ B}) is an RIS. Then, a HIS can represent functional and relational
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information about the same set of objects simultaneously. In general, A and B
are disjoint; however, this is not theoretically mandatory.

The algebraic properties of IS-morphism between FIS was previously studied
in [17] under the name of O-A-D homomorphism3. The notion of IS-morphism
between RIS is a straightforward generalization of that between FIS. In fact,
if FIS and RIS are considered as many-sorted algebras [4], both IS-morphism
and O-A-D homomorphism can be seen as homomorphism in universal algebra
[5,6]. Indeed, we can consider information systems as a 3-sorted algebra whose
sorts are the universe, the set of attributes, and the set of all attribute values
(or relational indicators). Though homomorphism has been studied extensively
in previous works, we define a novel notion of embedment between FIS and RIS
to capture the relationship or transformation between two kinds of information
related to the objects. This implies a new result, which shows that the embedding
relationship can be preserved by IS-morphism under some conditions.

The investigation of RIS also facilitates a further generalization of rough set
theory. In classical rough set theory, lower and upper approximations are defined
in terms of indiscernibility relations based on functional information associated
with the objects. However, it has been noted that many applications, such as
social network analysis [27], need to represent both functional and relational
information. Based on this observation, a concept of relational granulation was
recently proposed in [21]. The basic idea is that even though two objects are
indiscernible with respect to their attribute values, they may still be discernible
because of their relationships with other objects. Consequently, the definition of
lower and upper approximations must consider the finer indiscernibility relations.
In a future work, we will investigate different generalized rough sets based on
the relational information associated with objects.

5.2 An Application of ADL to MCDM

Relational information plays an important role in MCDA. When rough set the-
ory is applied to MCDA, it is crucial that preference-ordered attribute domains
and decision classes be dealt with [14]. The original rough set theory could not
handle inconsistencies arising from violation of the dominance principle due to its
use of the indiscernibility relation. In previous works on MCDA, the indiscerni-
bility relation was replaced by a dominance relation to solve the multi-criteria
sorting problem, and the FIS was replaced by a PCT to solve multi-criteria
choice and ranking problems [14]. A PCT is essentially an instance of an RIS, as
shown in Example 4, in which the relations are confined to preference relations.
This approach is called the dominance-based rough set approach (DRSA). For
MCDA problems, DRSA can induce a set of decision rules from sample deci-
sions provided by decision-makers. The induced decision rules play the role of a
comprehensive preference model and can make recommendations about a new
decision-making environment. The process whereby the induced decision rules
are used to facilitate decision-making is called multi-criteria decision making
(MCDM).
3 O, A, and D denotes objects, attributes, and the domain of values respectively.
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To apply ADL to MCDM, we define a rule of ADL as ϕ −→ ψ, where ϕ
and ψ are wffs of ADL, called the antecedent and the consequent of the rule
respectively. As in DL, let Tr be an interpretation of an ADL. Then, the set
mTr (ϕ) defined by

mTr (ϕ) = {(x, y) ∈ U × U | (x, y) |= ϕ} (7)

is called the meaning set of the formula ϕ in Tr. If Tr is understood, we simply
write m(ϕ). A wff ϕ is valid in Tr if m(ϕ) = U ×U . Some quantitative measures
that are useful in data mining can be redefined for ADL rules.

Definition 8. Let Φ be the set of all ADL rules and Tr = (U, A, {Hi | i ∈
A}, {ri | i ∈ A}) be an interpretation of them. Then,

1. the rule ϕ −→ ψ is valid in Tr iff mTr (ϕ) ⊆ mTr (ψ)
2. the absolute support function αTr : Φ → N is

αTr (ϕ −→ ψ) = |mTr(ϕ ∧ ψ)|

3. the relative support function ρTr : Φ → [0, 1] is

ρTr (ϕ −→ ψ) =
|mTr (ϕ ∧ ψ)|

|U |2

4. the confidence function γTr : Φ → [0, 1] is

γTr (ϕ −→ ψ) =
|mTr (ϕ ∧ ψ)|
|mTr(ϕ)| .

Without loss of generality, we assume that the elements of U are natural numbers
from 0 to |U |−1. Each wff can then be seen as a |U |×|U | Boolean matrix, called
its characteristic matrix . Thus, we can employ matrix algebra to test the validity
of a rule and calculate its support and confidence in an analogous way to that
proposed in [19,20]. This is based on the intimate connection between AL and
relation algebra [24,33].

In the applications, we assume that the set of relational indicators Hi is a
finite set of integers for every criterion i. Under such an assumption, we can use
the following shorthand:

(i,≥hi) ≡ ∨h≥hi(i, h) and (i,≤hi) ≡ ∨h≤hi(i, h).

By using ADL, the three main types of decision rules mentioned in [14] can be
represented as follows:

1. D≥-decision rules: ∧
i∈B

(i,≥hi) −→ (d,≥1),

2. D≤-decision rules: ∧
i∈B

(i,≤hi) −→ (d,≤−1),
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3. D≥≤-decision rules:∧
i∈B1

(i,≥hi) ∧
∧

i∈B2

(i,≤hi) −→ (d,≥1) ∨ (d,≤−1),

where B, B1, and B2 ⊆ A are sets of criteria and d ∈ A is the decision attribute.
We assume that {−1, 1} ⊆ Hd so that rd(x, y) = 1 means that x outranks y,
and rd(x, y) = −1 means that y outranks x.

Furthermore, the modal formulas of ADL allow us to represent some properties
of preference relations. For example,

1. reflexivity: δ −→ (i, 0),
2. anti-symmetry: ⊗(i,≥h) −→ (i,≤−h), and
3. transitivity: (i,≥h1) ◦ (i,≥h2) −→ (i,≥h1+h2).

Reflexivity means that each object is similar to itself in any attribute; anti-
symmetry means that if x is preferred to y by degree (at least) h, then y is
inferior to x by degree (at least) h; and transitivity denotes the additivity of
preference degrees. The measures α, ρ, and γ can be used to assess the degree of
reflexivity, anti-symmetry, and transitivity of an induced preference relation.

Example 8. Let us continue to use the PCT in Example 4 and consider the
following two ADL rules:

s1 = (o,≥2) −→ (d,≥1),

s2 = (p,≤−2) −→ (d,≤0).

Then we have
α ρ γ

s1 7 0.07 0.875
s2 15 0.15 1

Note that rule s2 is valid even though it only has a support value of 0.15. Also,
we observe that the anti-symmetry rule ⊗(i,≥h) −→ (i,≤−h) is valid in this
PCT, which means that the preference relation is anti-symmetrical.

The main advantage of the ADL representation is its deduction capability. While
many data mining algorithms for rule induction have been developed for MCDA,
relatively little attention has been paid to the use of induced rules. We can con-
sider two cases of using the rules to assist decision-making in real environments.
In a simple situation, it suffices to match the antecedents of the rules with the
real conditions. On the other hand, if the decision-maker encounters a complex
situation, the deduction capability of ADL rules may be very helpful. For ex-
ample, in a dynamic environment, the decision-maker has to derive a decision
plan consisting of several decision steps, each of which may be guided by a dif-
ferent decision model. If each decision model is represented by a set of ADL
wffs or rules, then the final decision can be deduced from the union of these
sets and the set of ADL wffs representing the real conditions by our axiomatic
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Fig. 2. The MCDA and MCDM phases

deduction system. This is illustrated in Figure 2, where MCDA and MCDM are
separated into two phases. In the MCDA phase, ordinary data mining algorithms
are employed to find decision rules. This is the learning phase in which previous
decision experiences are summarized into rules. In the MCDM phase, the rules
are applied to the real environments. As indicated above, ADL representation
plays an important role in this phase when the environment is highly complex.

5.3 An Application of ADL to the Representation of Attribute
Dependency

One of the most important concepts of relational databases is that of func-
tional dependency. In a relational schema design, functional dependencies are
determined by the semantics of the relation, since, in general, they cannot be
determined by inspection of an instance of the relation. That is, a functional
dependency is a constraint, not a property derived from a relation. However,
from a viewpoint of data mining, we can indeed find functional dependencies
between attributes from a data table. Such dependencies are called attribute de-
pendencies, the discovery of which is essential to the computation of reduct in
rough set theory.

Let Tf = (U, A, {Vi | i ∈ A}, {fi | i ∈ A}) be an FIS and B ∪ {i} ⊆ A be
a subset of attributes. Then, it is said that an attribute dependency between
B and i, denoted by B −→ i, exists in Tf if for any two objects x, y ∈ U ,
InfB(x) = InfB(y) implies fi(x) = fi(y). Though the DL wffs can relate the
values of condition attributes to those of decision attributes, the notion of at-
tribute dependency can not be represented in DL directly. Instead, we can only
simulate an attribute dependency between B and i by using a set of DL rules.
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More specifically, B −→ i exists in Tf if for all j ∈ B and vj ∈ Vj , there exists
v ∈ Vi such that ∧j∈B(j, vj) −→ (i, v) is valid in Tf .

On the other hand, we can express an attribute dependency in an FIS by an
ADL rule in an embedment of Tf . This embedding is a special instance of the
embedding in Example 5. That is, we embed Tf = (U, A, {Vi | i ∈ A}, {fi | i ∈
A}) into the RIS Tr = (U, A, {Hi | i ∈ A}, {ri | i ∈ A}), where Hi = {0, 1} and
ri(x, y) = 1 iff fi(x) = fi(y). The embedding is ((i, Ri)i∈A), where, for every
i ∈ A, Ri : Vi × Vi → {0, 1} is defined by

Ri(vi, v
′
i) = 1 iff vi = v′i

for all vi, v
′
i ∈ Vi. Note that ri is actually the characteristic function of the

{i}-indiscernibility relation in rough set theory. Then, an attribute dependency
B −→ i in Tf can be represented as an ADL rule

∧j∈B(j, 1) −→ (i, 1),

i.e., the attribute dependency B −→ i exists in Tf iff the rule ∧j∈B(j, 1) −→ (i, 1)
is valid in Tr. If we view each pair of objects in U ×U as a transaction and each
attribute as an item in a transaction database, then an ADL rule of the form
∧j∈B(j, 1) −→ (i, 1) is in fact an association rule. Thus, by transforming an FIS
into its embedded RIS, the discovery of attribute dependencies can be achieved
by ordinary association rule mining algorithms [2,18].

6 Conclusions

In this paper, we present ADL by combining DL and AL. ADL is useful for
representing rules induced from an RIS. An important kind of RIS is PCT,
which is commonly used in MCDA. The main advantage of using ADL is its
precision in syntax and semantics. As DL is a precise way to represent decision
rules induced from FIS, we apply ADL to reformulate the decision rules induced
by PCT in DRSA. It is shown that such reformulation makes it possible to
utilize ADL deduction in the highly complex decision-making process. We also
show that ADL rules can represent attribute dependencies in FIS. Consequently,
ordinary association rule mining algorithms can be used to discover attribute
dependencies.

While this paper is primarily concerned with the syntax and semantics of
ADL, efficient algorithms for data mining based on logical representation are
also important. In a future work, we will develop such algorithms.

In [30,31], it is shown that the relations between objects are induced by
relational structures in the domains of attributes. The preference relations in
multicriteria decision-making and time windows in time series analysis are two
important examples of relational structures. The derivation of the relations be-
tween objects from such structures is simply a kind of embedment. Certainly, we
could consider structures beyond binary relational structures. Then, it should
be possible to generalize RIS to non-binary relational information systems. We
will also explore this possibility in our future work.
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Abstract. This paper presents a general framework for the study of
rough fuzzy sets in which fuzzy sets are approximated in a crisp approx-
imation space. By the constructive approach, a pair of lower and upper
generalized rough fuzzy approximation operators is first defined. The
rough fuzzy approximation operators are represented by a class of gener-
alized crisp approximation operators. Properties of rough fuzzy approxi-
mation operators are then discussed. The relationships between crisp re-
lations and rough fuzzy approximation operators are further established.
By the axiomatic approach, various classes of rough fuzzy approximation
operators are characterized by different sets of axioms. The axiom sets of
rough fuzzy approximation operators guarantee the existence of certain
types of crisp relations producing the same operators. The relationship
between a fuzzy topological space and rough fuzzy approximation opera-
tors is further established. The connections between rough fuzzy sets and
Dempster-Shafer theory of evidence are also examined. Finally multi-step
rough fuzzy approximations within the framework of neighborhood sys-
tems are analyzed.

Keywords: approximation operators, belief functions, binary relations,
fuzzy sets, fuzzy topological spaces, neighborhood systems, rough fuzzy
sets, rough sets.

1 Introduction

The theory of rough sets was originally proposed by Pawlak [26,27] as a
formal tool for modelling and processing incomplete information. The basic
structure of the rough set theory is an approximation space consisting of a uni-
verse of discourse and an equivalence relation imposed on it. The equivalence
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relation is a key notion in Pawlak’s rough set model. The equivalence classes
in Pawlak’s rough set model provide the basis of “information granules” for
database analysis discussed in Zadeh’s [67,68]. Rough set theory can be viewed
as a crisp-set-based granular computing method that advances reaearch in this
area [12,17,29,30,37,38,62].

However, the requirement of an equivalence relation in Pawlak’s rough set
model seems to be a very restrictive condition that may limit the applications
of the rough set model. Thus one of the main directions of research in rough
set theory is naturally the generalization of the Pawlak rough set approxima-
tions. There are at least two approaches for the development of rough set theory,
namely the constructive and axiomatic approaches. In the constructive approach,
binary relations on the universe of discourse, partitions of the universe of dis-
course, neighborhood systems, and Boolean algebras are all the primitive no-
tions. The lower and upper approximation operators are constructed by means
of these notions [15,23,25,26,27,28,31,39,40,46,53,56,58,59,60,61,63]. Construc-
tive generalizations of rough set to fuzzy environment have also been discussed
in a number of studies [1,2,9,10,14,19,20,21,32,50,51,52,54,57]. For example, by
using an equivalence relation on U , Dubois and Prade introduced the lower and
upper approximations of fuzzy sets in a Pawlak approximation space to obtain
an extended notion called rough fuzzy set [9,10]. Alternatively, a fuzzy similarity
relation can be used to replace an equivalence relation. The result is a devia-
tion of rough set theory called fuzzy rough set [10,21,32,58]. Based on arbitrary
fuzzy relations, fuzzy partitions on U , and Boolean subalgebras of P(U), ex-
tended notions called rough fuzzy sets and fuzzy rough sets have been obtained
[19,20,23,50,51,52,54]. Alternatively, a rough fuzzy set is the approximation of
a fuzzy set in a crisp approximation space. The rough fuzzy set model may be
used to handle knowledge acquisition in information systems with fuzzy decisions
[70]. And a fuzzy rough set is the approximation of a crisp set or a fuzzy set in a
fuzzy approximation space. The fuzzy rough set model may be used to unravel
knowledge hidden in fuzzy decision systems [55]. Employing constructive meth-
ods, extensive research has also been carried out to compare the theory of rough
sets with other theories of uncertainty such as fuzzy sets and conditional events
[3,19,24,46]. Thus the constructive approach is suitable for practical applications
of rough sets.

On the other hand, the axiomatic approach, which is appropriate for studying
the structures of rough set algebras, takes the lower and upper approximation
operators as primitive notions. From this point of view, rough set theory may
be interpreted as an extension theory with two additional unary operators. The
lower and upper approximation operators are related respectively to the neces-
sity (box) and possibility (diamond) operators in modal logic, and the interior
and closure operators in topological space [4,5,6,13,22,44,45,47,48,60,63]. By this
approach, a set of axioms is used to characterize approximation operators that
are the same as the ones produced by using the constructive approach. Za-
kowski [69] studied a set of axioms on approximation operators. Comer [6] inves-
tigated axioms on approximation operators in relation to cylindric algebras. The
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investigation is made within the context of Pawlak information systems [25]. Lin
and Liu [16] suggested six axioms on a pair of abstract operators on the power
set of the universe of discourse within the framework of topological spaces. Un-
der these axioms, there exists an equivalence relation such that the derived lower
and upper approximations are the same as the abstract operators. Similar result
was also stated earlier by Wiweger [47]. The problem of these studies is that
they are restricted to the Pawlak rough set algebra defined by equivalence re-
lations. Wybraniec-Skardowska [56] examined many axioms on various classes
of approximation operators. Different constructive methods were suggested to
produce such approximation operators. Thiele [41] explored axiomatic charac-
terizations of approximation operators within modal logic for a crisp diamond
and box operator represented by an arbitrary binary crisp relation. The most
important axiomatic studies for crisp rough sets were made by Yao [57,59,60],
Yao and Lin [63], in which various classes of crisp rough set algebras are char-
acterized by different sets of axioms. As to the fuzzy cases, Moris and Yakout
[21] studied a set of axioms on fuzzy rough sets based on a triangular norm and
a residual implicator. Radzikowska and Kerre [32] defined a broad family of the
so called (I, T )-fuzzy rough sets which is determined by an implicator I and a
triangular norm T . Their studies however were restricted to fuzzy T -rough sets
defined by fuzzy T -similarity relations which were equivalence crisp relations in
the degenerated case. Thiele [42,43,44] investigated axiomatic characterizations
of fuzzy rough approximation operators and rough fuzzy approximation oper-
ators within modal logic for fuzzy diamond and box operators. Wu et al. [52],
Wu and Zhang [54], examined many axioms on various classes of rough fuzzy
and fuzzy rough approximation operators when T = min. Mi and Zhang [20]
discussed axiomatic characterization of a pair of dual lower and upper fuzzy ap-
proximation operators based on a residual implication. In [50], Wu et al. studied
axiomatic characterization of (I, T )-fuzzy rough sets corresponding to various
fuzzy relations. In this paper, we mainly focus on the study of rough fuzzy ap-
proximation operators derived from crisp binary relations.

Another important direction for generalization of rough set theory is its re-
lationship to the Dempster-Shafer theory of evidence [33] which was originated
by Dempster’s concept of lower and upper probabilities [7] and extended by
Shafer as a theory [33]. The basic representational structure in Dempster-Shafer
theory of evidence is a belief structure which consists of a family of subsets,
called focal elements, with associated individual positive weights summing to
one. The primitive numeric measures derived from the belief structure are a
dual pair of belief and plausibility functions. Shafer’s evidence theory can also
be extended to the fuzzy environment [8,11,51,65]. There exist some natural con-
nections between the rough set theory and Dempster-Shafer theory of evidence
[34,35,36,49,51,64]. It is demonstrated that various belief structures are associ-
ated with various rough approximation spaces such that different dual pairs of
upper and lower approximation operators induced by the rough approximation
spaces may be used to interpret the corresponding dual pairs of plausibility and
belief functions induced by the belief structures.
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In this paper, we focus mainly on the study of mathematical structure of rough
fuzzy approximation operators. We will review existing results and present some
new results on generalized rough fuzzy approximation operators. In the next sec-
tion, we give some basic notions of rough sets and review basic properties of gen-
eralized rough approximation operators. In Section 3, the concepts of generalized
rough fuzzy approximation operators are introduced. The representation theo-
rem of rough fuzzy approximation operators is stated and properties of the rough
fuzzy approximation operators are examined. In Section 4, we present the ax-
iomatic characterizations of rough fuzzy approximation operators. Various classes
of rough fuzzy approximation operators are characterized by different sets of ax-
ioms, and the axiom sets of fuzzy approximation operators guarantee the exis-
tence of certain types of crisp relation producing the same operators. We further
establish the relationship between rough fuzzy approximation operators and fuzzy
topological space in Section 5. The interpretations of the rough fuzzy set theory
and the Dempster-Shafer theory of evidence are discussed in Section 6. In Section
7, we build a framework for the study of k-step-neighborhood systems and rough
fuzzy approximation operators in which a binary crisp relation is still used as a
primitive notion. We then conclude the paper with a summary in Section 8.

2 Generalized Rough Sets

Let X be a finite and nonempty set called the universe of discourse. The class of
all subsets (respectively, fuzzy subsets) of X will be denoted by P(X) (respec-
tively, by F(X)). For any A ∈ F(X), the α-level and the strong α-level set of A
will be denoted by Aα and Aα+, respectively, that is, Aα = {x ∈ X : A(x) ≥ α}
and Aα+ = {x ∈ X : A(x) > α}, where α ∈ I = [0, 1], the unit interval.
We denote by ∼ A the complement of A. The cardinality of A is denoted by
|A| =

∑
u∈X

A(u). If P is a probability measure on X , then the probability of the

fuzzy set A, denoted by P (A), is defined, in the sense of Zadeh [66], by

P (A) =
∑
x∈X

A(x)P (x).

Definition 1. Let U and W be two finite and nonempty universes of discourse.
A subset R ∈ P(U × W ) is referred to as a (crisp) binary relation from U to
W . The relation R is referred to as serial if for all x ∈ U there exists y ∈ W
such that (x, y) ∈ R; If U = W , R is referred to as a binary relation on U . R is
referred to as reflexive if for all x ∈ U , (x, x) ∈ R; R is referred to as symmetric
if for all x, y ∈ U , (x, y) ∈ R implies (y, x) ∈ R; R is referred to as transitive if
for all x, y, z ∈ U, (x, y) ∈ R and (y, z) ∈ R imply (x, z) ∈ R; R is referred to as
Euclidean if for all x, y, z ∈ U, (x, y) ∈ R and (x, z) ∈ R imply (y, z) ∈ R; R is
referred to as an equivalence relation if R is reflexive, symmetric and transitive.

Suppose that R is an arbitrary crisp relation from U to W . We can define a
set-valued function Rs : U → P(W ) by:

Rs(x) = {y ∈ W : (x, y) ∈ R}, x ∈ U.
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Rs(x) is referred to as the successor neighborhood of x with respect to R. Obvi-
ously, any set-valued function F from U to W defines a binary relation from U
to W by setting R = {(x, y) ∈ U ×W : y ∈ F (x)}. From the set-valued function
F , we can define a basic set assignment [51,60,64] j : P(W ) → P(U),

j(A) = {u ∈ U : F (u) = A}, A ∈ P(W ).

It is easy to verify that j satisfies the properties:

(J1)
⋃

A⊆W

j(A) = U, (J2) A �= B =⇒ j(A) ∩ j(B) = ∅.

Definition 2. If R is an arbitrary crisp relation from U to W , then the triplet
(U,W, R) is referred to as a generalized approximation space. For any set A ⊆ W ,
a pair of lower and upper approximations, R(A) and R(A), are defined by

R(A) = {x ∈ U : Rs(x) ⊆ A},
R(A) = {x ∈ U : Rs(x)

⋂
A �= ∅}.

(1)

The pair (R(A), R(A)) is referred to as a generalized crisp rough set, and R
and R : F(W ) → F(U) are referred to as the lower and upper generalized crisp
approximation operators respectively.

From the definition, the following theorem can be easily derived [59,60]:

Theorem 1. For any relation R from U to W , its lower and upper approxima-
tion operators satisfy the following properties: for all A, B ∈ P(W ),

(L1) R(A) =∼ R(∼ A), (U1) R(A) =∼ R(∼ A);

(L2) R(W ) = U, (U2) R(∅) = ∅;
(L3) R(A ∩ B) = R(A) ∩ R(B), (U3) R(A ∪ B) = R(A) ∪ R(B);

(L4) A ⊆ B =⇒ R(A) ⊆ R(B), (U4) A ⊆ B =⇒ R(A) ⊆ R(B);

(L5) R(A ∪ B) ⊇ R(A) ∪ R(B), (U5) R(A ∩ B) ⊆ R(A) ∩ R(B).

With respect to certain special types, say, serial, reflexive, symmetric, transitive,
and Euclidean binary relations on the universe of discourse U , the approximation
operators have additional properties [59,60,61].

Theorem 2. Let R be an arbitrary crisp binary relation on U , and R and R
the lower and upper generalized crisp approximation operators defined by Eq.(1).
Then

R is serial ⇐⇒ (L0) R(∅) = ∅,
⇐⇒ (U0) R(U) = U,
⇐⇒ (LU0) R(A) ⊆ R(A), ∀A ∈ P(U),

R is reflexive ⇐⇒ (L6) R(A) ⊆ A, ∀A ∈ P(U),
⇐⇒ (U6) A ⊆ R(A), ∀A ∈ P(U),
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R is symmetric ⇐⇒ (L7) R(R(A)) ⊆ A, ∀A ∈ P(U),
⇐⇒ (U7) A ⊆ R(R(A)), ∀A ∈ P(U),

R is transitive ⇐⇒ (L8) R(A) ⊆ R(R(A)), ∀A ∈ P(U),
⇐⇒ (U8) R(R(A)) ⊆ R(A), ∀A ∈ P(U),

R is Euclidean ⇐⇒ (L9) R(R(A)) ⊆ R(A), ∀A ∈ P(U),
⇐⇒ (U9) R(A) ⊆ R(R(A)), ∀A ∈ P(U).

If R is an equivalence relation on U , then the pair (U, R) is a Pawlak approxi-
mation space and more interesting properties of lower and upper approximation
operators can be derived [26,27].

3 Construction of Generalized Rough Fuzzy
Approximation Operators

In this section, we review the constructive definitions of rough fuzzy approxima-
tion operators and give the basic properties of the operators.

3.1 Definitions of Rough Fuzzy Approximation Operators

A rough fuzzy set is the approximation of a fuzzy set in a crisp approximation
space [10,54,58].

Definition 3. Let U and W be two finite non-empty universes of discourse and
R a crisp binary relation from U to W . For any set A ∈ F(W ), the lower and
upper approximations of A, R(A) and R(A), with respect to the crisp approxi-
mation space (U,W, R) are fuzzy sets of U whose membership functions, for each
x ∈ U , are defined respectively by

R(A)(x) =
∧

y∈Rs(x)

A(y),

R(A)(x) =
∨

y∈Rs(x)

A(y).
(2)

The pair (R(A), R(A)) is called a generalized rough fuzzy set, and R and R :
F(W ) → F(U) are referred to as the lower and upper generalized rough fuzzy
approximation operators respectively.

If A ∈ P(W ), then we can see that R(A)(x) = 1 iff Rs(x) ⊆ A and R(A)(x) = 1
iff Rs(x) ∩A �= ∅. Thus Definition 3 degenerates to Definition 2 when the fuzzy
set A reduces to a crisp set.

3.2 Representations of Rough Fuzzy Approximation Operators

A fuzzy set can be represented by a family of crisp sets using its α-level sets.
In [58], Yao obtained the representation theorem of rough fuzzy approximation
operators derived from a Pawlak approximation space. Wu and Zhang [54] gen-
eralized Yao’s representation theorem of rough fuzzy approximation operators
to an arbitrary crisp approximation space. We review and summarize this idea
as follows:
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Definition 4. A set-valued mapping N : I → P(U) is said to be nested if for
all α, β ∈ I,

α ≤ β =⇒ N(β) ⊆ N(α).

The class of all P(U)-valued nested mappings on I will be denoted by N (U).

It is well-known that the following representation theorem holds [52,54]:

Theorem 3. Let N ∈ N (U). Define a function f : N (U) → F(U) by:

A(x) := f(N)(x) =
∨
α∈I

(α ∧ N(α)(x)), x ∈ U,

where N(α)(x) is the characteristic function of N(α). Then f is a surjective
homomorphism, and the following properties hold:

(1) Aα+ ⊆ N(α) ⊆ Aα, α ∈ I,
(2) Aα =

⋂
λ<α

N(λ), α ∈ I,

(3) Aα+ =
⋃

λ>α

N(λ), α ∈ I,

(4) A =
∨

α∈I

(α ∧ Aα+) =
∨

α∈I

(α ∧ Aα).

Let (U,W, R) be a generalized approximation space, ∀A ∈ F(W ) and 0 ≤ β ≤ 1,
the lower and upper approximations of Aβ and Aβ+ with respect to (U,W, R)
are defined respectively as

R(Aβ) = {x ∈ U : Rs(x) ⊆ Aβ}, R(Aβ) = {x ∈ U : Rs(x) ∩Aβ �= ∅},
R(Aβ+) = {x ∈ U : Rs(x) ⊆ Aβ+}, R(Aβ+) = {x ∈ U : Rs(x) ∩ Aβ+ �= ∅}.

It can easily be verified that the four classes {R(Aα) : α ∈ I}, {R(Aα+) : α ∈
I}, {R(Aα) : α ∈ I}, and {R(Aα+) : α ∈ I} are P(U)-valued nested mappings
on I. By Theorem 3, each of them defines a fuzzy subset of U which equals the
lower (and upper, respectively) rough fuzzy approximation operator [54].

Theorem 4. Let (U,W, R) be a generalized approximation space and A ∈ F
(W ), then

(1) R(A) =
∨

α∈I

[α ∧R(Aα)] =
∨

α∈I

[α ∧ R(Aα+)],

(2) R(A) =
∨

α∈I

[α ∧R(Aα)] =
∨

α∈I

[α ∧ R(Aα+)].

And
(3) [R(A)]α+ ⊆ R(Aα+) ⊆ R(Aα) ⊆ [R(A)]α, 0 ≤ α ≤ 1,

(4) [R(A)]α+ ⊆ R(Aα+) ⊆ R(Aα) ⊆ [R(A)]α, 0 ≤ α ≤ 1.

3.3 Properties of Rough Fuzzy Approximation Operators

By the representation theorem of rough fuzzy approximation operators we can
obtain properties of rough fuzzy approximation operators [54].
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Theorem 5. The lower and upper rough fuzzy approximation operators, R and
R, defined by Eq.(2) satisfy the properties: ∀A, B ∈ F(W ), ∀α ∈ I,

(FL1) R(A) =∼ R(∼ A), (FU1) R(A) =∼ R(∼ A),

(FL2) R(A ∨ α̂) = R(A) ∨ α̂, (FU2) R(A ∧ α̂) = R(A) ∧ α̂,

(FL3) R(A ∧ B) = R(A) ∧ R(B), (FU3) R(A ∨ B) = R(A) ∨R(B),
(FL4) A ⊆ B =⇒ R(A) ⊆ R(B), (FU4) A ⊆ B =⇒ R(A) ⊆ R(B),

(FL5) R(A ∨ B) ⊇ R(A) ∨ R(B), (FU5) R(A ∧ B) ⊆ R(A) ∧R(B),

where â is the constant fuzzy set: â(x) = a, for all x.

Properties (FL1) and (FU1) show that the rough fuzzy approximation opera-
tors R and R are dual to each other. Properties with the same number may be
regarded as dual properties. Properties (FL3) and (FU3) state that the lower
rough fuzzy approximation operator R is multiplicative, and the upper rough
fuzzy approximation operator R is additive. One may also say that R is dis-
tributive w.r.t. the intersection of fuzzy sets, and R is distributive w.r.t. the
union of fuzzy sets. Properties (FL5) and (FU5) imply that R is not distributive
w.r.t. set union, and R is not distributive w.r.t. set intersection. However, prop-
erties (FL2) and (FU2) show that R is distributive w.r.t. the union of a fuzzy
set and a fuzzy constant set, and R is distributive w.r.t. the intersection of a
fuzzy set and a constant fuzzy set. Evidently, properties (FL2) and (FU2) imply
the following properties:

(FL2)′ R(W ) = U, (FU2)′ R(∅) = ∅.

Analogous to Yao’s study in [59], a serial rough fuzzy set model is obtained
from a serial binary relation. The property of a serial relation can be charac-
terized by the properties of its induced rough fuzzy approximation operators
[54].

Theorem 6. If R is an arbitrary crisp relation from U to W , and R and R are
the rough fuzzy approximation operators defined by Eq.(2), then

R is serial ⇐⇒ (FL0) R(∅) = ∅,
⇐⇒ (FU0) R(W ) = U,

⇐⇒ (FL0)′ R(α̂) = α̂, ∀α ∈ I,

⇐⇒ (FU0)′ R(α̂) = α̂, ∀α ∈ I,
⇐⇒ (FLU0) R(A) ⊆ R(A), ∀A ∈ F(W ).

By (FLU0), the pair of rough fuzzy approximation operators of a serial rough set
model is an interval structure. In the case of connections between other special
crisp relations and rough fuzzy approximation operators, we have the following
theorem which may be seen as a generalization of Theorem 2 [54]:
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Theorem 7. Let R be an arbitrary crisp relation on U , and R and R the lower
and upper rough fuzzy approximation operators defined by Eq.(2). Then

R is reflexive ⇐⇒ (FL6) R(A) ⊆ A, ∀A ∈ F(U),

⇐⇒ (FU6) A ⊆ R(A), ∀A ∈ F(U),

R is symmetric ⇐⇒ (FL7) R(R(A)) ⊆ A, ∀A ∈ F(U),

⇐⇒ (FU7) A ⊆ R(R(A)), ∀A ∈ F(U),

⇐⇒ (FL7)′ R(1U−{x})(y) = R(1U−{y})(x), ∀(x, y) ∈ U × U,

⇐⇒ (FU7)′ R(1x)(y) = R(1y)(x), ∀(x, y) ∈ U × U,

R is transitive ⇐⇒ (FL8) R(A) ⊆ R(R(A)), ∀A ∈ F(U),

⇐⇒ (FU8) R(R(A)) ⊆ R(A), ∀A ∈ F(U),

R is Euclidean ⇐⇒ (FL9) R(R(A)) ⊆ R(A), ∀A ∈ F(U),

⇐⇒ (FU9) R(A) ⊆ R(R(A)), ∀A ∈ F(U).

4 Axiomatic Characterization of Rough Fuzzy
Approximation Operators

In the axiomatic approach, rough sets are characterized by abstract operators.
For the case of rough fuzzy sets, the primitive notion is a system (F(U),F(W ),∧,
∨,∼, L, H), where L and H are unary operators from F(W ) to F(U). In this
section, we show that rough fuzzy approximation operators can be characterized
by axioms. The results may be viewed as the generalized counterparts of Yao
[57,59,60].

Definition 5. Let L, H : F(W ) → F(U) be two operators. They are referred to
as dual operators if for all A ∈ F(W ),

(fl1) L(A) =∼ H(∼ A),
(fu1) H(A) =∼ L(∼ A).

By the dual properties of the operators, we only need to define one operator.
We state the following theorem which can be proved via the discussion on the
constructive approach in [54]:

Theorem 8. Suppose that L, H : F(W ) → F(U) are dual operators. Then there
exists a crisp binary relation R from U to W such that for all A ∈ F(W )

L(A) = R(A), and H(A) = R(A)

iff L satisfies axioms (flc), (fl2), (fl3), or equivalently H satisfies axioms (fuc),
(fu2), (fu3):
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(flc) L(1W−{y}) ∈ P(U), ∀y ∈ W,

(fl2) L(A ∨ α̂) = L(A) ∨ α̂, ∀A ∈ F(W ), ∀α ∈ I,

(fl3) L(A ∧ B) = L(A) ∧ L(B), ∀A, B ∈ F(W ),
(fuc) H(1y) ∈ P(U), ∀y ∈ W,

(fu2) H(A ∧ α̂) = H(A) ∧ α̂, ∀A ∈ F(W ), ∀α ∈ I,

(fu3) H(A ∨ B) = H(A) ∨ H(B), ∀A, B ∈ F(W ),

where 1y denotes the fuzzy singleton with value 1 at y and 0 elsewhere.

According to Theorem 8, axioms (flc),(fl1),(fl2), (fl3), or equivalently, axioms
(fuc), (fu1), (fu2), (fu3) are considered to be basic axioms of rough fuzzy ap-
proximation operators. These lead to the following definitions of rough fuzzy set
algebras:

Definition 6. Let L, H : F(W ) → F(U) be a pair of dual operators. If L satis-
fies axioms (flc), (fl2), and (fl3), or equivalently H satisfies axioms (fuc), (fu2),
and (fu3), then the system (F(U),F(W ),∧,∨,∼, L, H) is referred to as a rough
fuzzy set algebra, and L and H are referred to as rough fuzzy approximation
operators. When U = W , (F(U),∧,∨,∼, L, H) is also called a rough fuzzy set
algebra, in such a case, if there exists a serial (a reflexive, a symmetric, a tran-
sitive, an Euclidean, an equivalence) relation R on U such that L(A) = R(A)
and H(A) = R(A) for all A ∈ F(U), then (F(U),∧,∨,∼, L, H) is referred to as
a serial (a reflexive, a symmetric, a transitive, an Euclidean, a Pawlak) rough
fuzzy set algebra.

Axiomatic characterization of serial rough fuzzy set algebra is summarized as
the following Theorem [54]:

Theorem 9. Suppose that (F(U),F(W ),∧,∨,∼, L, H) is a rough fuzzy set al-
gebra, i.e., L satisfies axioms (flc), (fl1), (fl2) and (fl3), and H satisfies (fuc),
(fu1), (fu2) and (fu3). Then it is a serial rough fuzzy set algebra iff one of fol-
lowing equivalent axioms holds:

(fl0) L(α̂) = α̂, ∀α ∈ I,
(fu0) H(α̂) = α̂, ∀α ∈ I,
(fl0)′ L(∅) = ∅,
(fu0)′ H(W ) = U,

(flu0)′ L(A) ⊆ H(A), ∀A ∈ F(W ).

Axiom (flu0)′ states that L(A) is a fuzzy subset of H(A). In such a case,
L, H : F(W ) → F(U) are called the lower and upper rough fuzzy approximation
operators and the system (F(U),F(W ),∧,∨,∼, L, H) is an interval structure.
Axiomatic characterizations of other special rough fuzzy operators are summa-
rized in the following Theorems 10 and 11 [54]:

Theorem 10. Suppose that (F(U),∧,∨,∼, L, H) is a rough fuzzy set algebra.
Then
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(1) it is a reflexive rough fuzzy set algebra iff one of following equivalent axioms
holds:

(fl6) L(A) ⊆ A, ∀A ∈ F(U),
(fu6) A ⊆ H(A), ∀A ∈ F(U).

(2) it is a symmetric rough fuzzy set algebra iff one of the following equivalent
axioms holds:

(fl7)′ L(1U−{x})(y) = L(1U−{y})(x), ∀(x, y) ∈ U × U,

(fu7)′ H(1x)(y) = H(1y)(x), ∀(x, y) ∈ U × U,

(fl7) A ⊆ L(H(A)), ∀A ∈ F(U),
(fu7) H(L(A)) ⊆ A, ∀A ∈ F(U).

(3) it is a transitive rough fuzzy set algebra iff one of following equivalent
axioms holds:

(fl8) L(A) ⊆ L(L(A)), ∀A ∈ F(U),
(fu8) H(H(A)) ⊆ H(A), ∀A ∈ F(U).

(4) it is an Euclidean rough fuzzy set algebra iff one of following equivalent
axioms holds:

(fl9) H(L(A)) ⊆ L(A), ∀A ∈ F(U),
(fu9) H(A) ⊆ L(H(A)), ∀A ∈ F(U).

Theorem 10 implies that a rough fuzzy algebra (F(U),∧,∨,∼, L, H) is a reflexive
rough fuzzy algebra iff H is an embedding on F(U) [20,43] and it is a transitive
rough fuzzy algebra iff H is closed on F(U) [20].

Theorem 11. Suppose that (F(U),∧,∨,∼, L, H) is a rough fuzzy set algebra.
Then it is a Pawlak rough fuzzy set algebra iff L satisfies axioms (fl6), (fl7) and
(fl8) or equivalently, H satisfies axioms (fu6), (fu7) and (fu8).

Theorem 11 implies that a rough fuzzy algebra (F(U),∧,∨,∼, L, H) is a Pawlak
rough fuzzy algebra iff H is a symmetric closure operator on F(U) [14]. It can
be proved that axioms (fu6), (fu7) and (fu8) in Theorem 11 can also be replaced
by axioms (fu6) and (fu9).

5 Fuzzy Topological Spaces and Rough Fuzzy
Approximation Operators

The relationship between topological spaces and rough approximation operators
has been studied by many researchers. In [48], Wu examined the relationship
between fuzzy topological spaces and fuzzy rough approximation operators. In
this section we discuss the relationship between a fuzzy topological space and
rough fuzzy approximation operators.

We first introduce some definitions related to fuzzy topology [18].
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Definition 7. A subset τ of F(U) is referred to as a fuzzy topology on U iff it
satisfies

(1) If A ⊆ τ , then
∨

A∈A
A ∈ τ ,

(2) If A, B ∈ τ , then A ∧ B ∈ τ ,
(3) If α̂ ∈ F(U) is a constant fuzzy set, then α̂ ∈ τ.

Definition 8. A map Ψ : F(U) → F(U) is referred to as a fuzzy interior
operator iff for all A, B ∈ F(U) it satisfies:

(1) Ψ(A) ⊆ A,
(2) Ψ(A ∧ B) = Ψ(A) ∧ Ψ(B),
(3) Ψ2(A) = Ψ(A),
(4) Ψ(α̂) = α̂, ∀α ∈ I.

Definition 9. A map Φ : F(U) → F(U) is referred to as a fuzzy closure opera-
tor iff for all A, B ∈ F(U) it satisfies:

(1) A ⊆ Φ(A),
(2) Φ(A ∨ B) = Φ(A) ∨ Φ(B),
(3) Φ2(A) = Φ(A),
(4) Φ(α̂) = α̂, ∀α ∈ I.
The elements of a fuzzy topology τ are referred to as open fuzzy sets, and it is

easy to show that a fuzzy interior operator Ψ defines a fuzzy topology τ
Ψ

= {A ∈
F(U) : Ψ(A) = A}. So, the open fuzzy sets are the fixed points of Ψ .

By using Theorems 7 and 10, we can obtain the following theorem:

Theorem 12. Assume that R is a binary relation on U . Then the following are
equivalent:

(1) R is a reflexive and transitive relation;
(2) the upper rough fuzzy approximation operator Φ = R : F(U) → F(U) is a

fuzzy closure operator;
(3) the lower rough fuzzy approximation operator Ψ = R : F(U) → F(U) is a

fuzzy interior operator.

Theorem 12 shows that the lower and upper rough fuzzy approximation op-
erators constructed from a reflexive and transitive crisp relation are the fuzzy
interior and closure operators respectively. Thus a rough fuzzy set algebra con-
structed from a reflexive and transitive relation is referred to as rough fuzzy
topological set algebra. Theorem 12 implies Theorem 13.

Theorem 13. Assume that R is a reflexive and transitive crisp relation on U .
Then there exists a fuzzy topology τR on U such that Ψ = R : F(U) → F(U) and
Φ = R : F(U) → F(U) are the fuzzy interior and closure operators respectively.

By using Theorems 7, 8, 10, and 12, we can obtain following Theorems 14 and
15, which illustrate that under certain conditions a fuzzy interior (closure, resp.)
operator derived from a fuzzy topological space can be associated with a reflexive
and transitive fuzzy relation such that the induced fuzzy lower (upper, resp.)
approximation operator is the fuzzy interior (closure, resp.) operator.
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Theorem 14. Let Φ : F(U) → F(U) be a fuzzy closure operator. Then there
exists a reflexive and transitive crisp relation on U such that R(A) = Φ(A) for
all A ∈ F(U) iff Φ satisfies the following three conditions:

(1) Φ(1y) ∈ P(U), ∀y ∈ U ,
(2) Φ(A ∨ B) = Φ(A) ∨ Φ(B), ∀A, B ∈ F(U),
(3) Φ(A ∧ α̂) = Φ(A) ∧ α̂, ∀A ∈ F(U), ∀α ∈ I.

Theorem 15. Let Ψ : F(U) → F(U) be a fuzzy interior operator, then there
exists a reflexive and transitive crisp relation on U such that R(A) = Ψ(A) for
all A ∈ F(U) iff Ψ satisfies the following three conditions:

(1) Ψ(1U−{y}) ∈ P(U), ∀y ∈ U,
(2) Ψ(A ∧ B) = Ψ(A) ∧ Ψ(B), ∀A, B ∈ F(U),
(3) Ψ(A ∨ α̂) = Ψ(A) ∨ α̂, ∀A ∈ F(U), ∀α ∈ I.

6 Fuzzy Belief Functions and Rough Fuzzy
Approximation Operators

In this section, we present results relating evidence theory in the fuzzy environ-
ment and rough fuzzy approximation operators.

The basic representational structure in the Dempster-Shafer theory of evi-
dence is a belief structure [8].

Definition 10. Let W be a nonempty finite universe of discourse. A set function
m : P(W ) → I = [0, 1] is referred to as a basic probability assignment if it
satisfies

(M1) m(∅) = 0, (M2)
∑

A∈P(W )

m(A) = 1.

Let M = {A ∈ P(W ) : m(A) �= 0}. Then the pair (M, m) is called a belief
structure.

Associated with each belief structure, a pair of fuzzy belief and plausibility func-
tions can be derived [8].

Definition 11. A fuzzy set function Bel : F(W ) → I is called a fuzzy belief
function iff

Bel(X) =
∑

A∈M
m(A)NA(X), ∀X ∈ F(W ),

and a fuzzy set function Pl : F(W ) → I is called a fuzzy plausibility function iff

Pl(X) =
∑

A∈M
m(A)ΠA(X), ∀X ∈ F(W ),

where NA and ΠA are respectively the fuzzy necessity and fuzzy possibility mea-
sures generated by the set A as follows [8,11]:

NA(X) =
∧

y/∈A

(1 −X(y)), ∀X ∈ F(W ),

ΠA(X) =
∨

y∈A

X(y), ∀X ∈ F(W ).
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Fuzzy belief and plausibility functions basing on the same belief structure are
connected by the dual property

Pl(X) = 1 −Bel(∼ X), ∀X ∈ F(W ).

When X is a crisp subset of W , it can be verified that

Bel(X) =
∑

{A∈M:A⊆X}
m(A), P l(X) =

∑
{A∈M:A∩X �=∅}

m(A).

Thus fuzzy belief and plausibility functions are indeed generalizations of classical
belief and plausibility functions.

In [49], the connection between a pair of fuzzy belief and plausibility func-
tions derived from a fuzzy belief structure and a pair of lower and upper fuzzy
rough approximation operations induced from a fuzzy approximation space was
illustrated. Similar to the proof of analogous results in [49], we can prove the
following two theorems which state that serial rough fuzzy set algebras can be
used to interpret fuzzy belief and plausibility functions derived from a crisp belief
structure (see [51]).

Theorem 16. Let R be a serial relation from U to W , and R(X) and R(X) the
dual pair of upper and lower rough fuzzy approximations of a fuzzy set X ∈ F(W )
with respect to the approximation space (U,W, R). The qualities of the upper and
lower approximations, Q(X) and Q(X), are defined by

Q(X) = |R(X)|/|U |, Q(X) = |R(X)|/|U |.

Then Q and Q are a dual pair of fuzzy plausibility and belief functions on W ,
and the corresponding basic probability assignment is defined by

m(A) = |j(A)|/|U |, A ∈ P(W ),

where j is the basic set assignment induced by R, i.e., j(A) = {u ∈ U : Rs(u) =
A} for A ∈ P(W ). Conversely, if Pl and Bel : F(W ) → I are a dual pair of
fuzzy plausibility and belief functions on W induced by a belief structure (M, m),
with m(A) being a rational number of each A ∈ M, then there exists a finite
universe of discourse U and a serial crisp relation from U to W , such that its
induced qualities of the upper and lower approximations satisfy

Pl(X) = Q(X), Bel(X) = Q(X), ∀X ∈ F(W ).

Moreover, if Pl and Bel : F(U) → I are a dual pair of fuzzy plausibility and
belief functions on U induced by a belief structure (M, m), with m(A) being
equivalent to a rational number with |U | as its denominator for each A ∈ M,
then there exists a serial crisp relation on U such that its induced qualities of
upper and lower approximations satisfy

Pl(X) = Q(X), Bel(X) = Q(X), ∀X ∈ F(U).
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Theorem 17. Let R be a serial relation from U to W and let P be a probability
measure on U with P (x) > 0 for all x ∈ U . The quadruple ((U, P ),W, R) is
referred as a random approximation space. For X ∈ F(W ), R(X) and R(X) are
the dual pair of upper and lower rough fuzzy approximations of X ∈ F(W ) with
respect to ((U, P ),W, R). The random qualities of the upper and lower approxi-
mations, M(X) and M(X), are defined by

M(X) = P (R(X)), M(X) = P (R(X)).

Then M and M are a dual pair of fuzzy plausibility and belief functions on W ,
and the corresponding basic probability assignment is defined by

m(A) = P (j(A)), A ∈ P(W ),

where j is the basic set assignment induced by R. Conversely, if Pl and Bel :
F(W ) → I are the dual pair of fuzzy plausibility and belief functions on W in-
duced by a belief structure (M, m), then there exists a finite universe of discourse
U , a probability measure P on U and a serial crisp relation R from U to W ,
such that its induced random qualities of the upper and lower approximations
satisfy

Pl(X) = M(X), Bel(X) = M(X), ∀X ∈ F(W ).

7 Rough Fuzzy Approximation Operators Based on
Neighborhood Systems

Studies on the relationships between rough approximation operators and
neighborhood systems have been made over the years. In [61], Yao explored
the relational interpretations of 1-step neighborhood operators and rough set
approximation operators. Wu and Zhang [53] characterized generalized rough
approximation operators under k-step neighborhood systems. In this section,
we examine the relationships between rough fuzzy approximation operators and
k-step neighborhood systems.

Definition 12. For an arbitrary binary relation R on U and a positive integer
k, we define a notion of binary relation Rk, called the k-step-relation of R, as
follows:

R1 = R,
Rk = {(x, y) ∈ U × U : there exists y1, y2, . . . , yi ∈ U, 1 ≤ i ≤ k − 1, such that

xRy1, y1Ry2, . . . , yiRy} ∪ R1, k ≥ 2.

It is easy to see that

Rk+1 = Rk ∪ {(x, y) ∈ U × U : there exists y1, y2, . . . , yk ∈ U,
such that xRy1, y1Ry2, . . . , ykRy}.

Obviously, Rk ⊆ Rk+1, and moreover, Rk = Rn for all k ≥ n. In fact, Rn is
the transitive closure of R. Of course, Rn is transitive.
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Definition 13. Let R be a binary relation. For two elements x, y ∈ U and k ≥ 1,
if xRky, then we say that y is Rk-related to x, x is an Rk-predecessor of y, and
y is an Rk-successor of x. The set of all Rk-successors of x is denoted by rk(x),
i.e., rk(x) = {y ∈ U : xRky}; rk(x) is also referred to as the k-step neighborhood
of x.

We see that {rk(x) : k ≥ 1} is a neighborhood system of x, and {rk(x) : x ∈ U}
is a k-step neighborhood system in the universe of discourse.

The k-step neighborhood system is monotone increasing with respect to k.
For two relations R and R′, it can be checked that

R ⊆ R′ ⇐⇒ r1(x) ⊆ r′1(x), for all x ∈ U.

In particular,

rk(x) ⊆ rk+1(x), for all k ≥ 1 and all x ∈ U.

Thus {rk(x) : k ≥ 1} is a nested sequence of neighborhood system. It offers a
multi-layered granulation of the object x. We can observe that

rk(x) = {y ∈ U : there exists y1, y2, . . . , yi ∈ U such that xRy1, y1Ry2, . . . ,
yiRy, 1 ≤ i ≤ k − 1, or xRy}.

Evidently,
A ⊆ B =⇒ rk(A) ⊆ rk(B), A, B ∈ P(U),

where rk(A) = ∪{rk(x) : x ∈ A}.
It can be checked that

rl(rk(x)) ⊆ rk+l(x), for all k, l ≥ 1.

And if R is Euclidean, then we have [53]

rl(rk(x)) = rk+l(x), for all k, l ≥ 1.

The relationship between a special type of binary relation R and its induced
k-step-relation Rk is summarized as follows [53]:

Theorem 18. Assume that R is an arbitrary binary relation on U . Then

R is serial ⇐⇒ Rk is serial for all k ≥ 1;
R is reflexive ⇐⇒ Rk is reflexive for all k ≥ 1;
R is symmetric ⇐⇒ Rk is symmetric for all k ≥ 1;
R is transitive ⇐⇒ Rk is transitive for all k ≥ 1, and Rk = R;
R is Euclidean ⇐⇒ Rk is Euclidean for all k ≥ 1.

Definition 14. Given an arbitrary binary relation R on the universe of dis-
course U , for any set X ⊆ U and k ≥ 1, we may define a pair of lower and
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upper approximations of X with respect to the k-step neighborhood system as
follows:

Rk(X) = {x ∈ U : rk(x) ⊆ X},
Rk(X) = {x ∈ U : rk(x) ∩ X �= ∅}.

Rk and Rk are referred to as the k-step lower and upper approximation operators
respectively.

By [53], it is not difficult to prove that the properties of a binary relation can
be equivalently characterized by the properties of multi-step approximation op-
erators.

Theorem 19. Let R be an arbitrary binary relation on U . Then

R is serial ⇐⇒ (KNL0) Rk(∅) = ∅, k ≥ 1,

⇐⇒ (KNU0) Rk(U) = U, k ≥ 1,

⇐⇒ (KNLU0) Rk(A) ⊆ Rk(A), A ∈ P(U), k ≥ 1,

R is reflexive ⇐⇒ (KNL6) Rk(A) ⊆ A, A ∈ P(U), k ≥ 1,

⇐⇒ (KNU6) A ⊆ Rk(A), A ∈ P(U), k ≥ 1,

R is symmetric ⇐⇒ (KNL7) Rl(Rk(A)) ⊆ A, A ∈ P(U), 1 ≤ l ≤ k,

⇐⇒ (KNU7) A ⊆ Rl(Rk(A)), A ∈ P(U), 1 ≤ l ≤ k,

R is transitive ⇐⇒ (KNL8) Rk(A) ⊆ Rl(Rk(A)), A ∈ P(U), 1 ≤ l ≤ k,

⇐⇒ (KNU8) Rk(Rl(A)) ⊆ Rk(A), A ∈ P(U), 1 ≤ l ≤ k,

R is Euclidean ⇐⇒ (KNL9) Rl(Rm(A)) ⊆ Rk(A), A ∈ P(U), 1 ≤ l ≤ k≤m,

⇐⇒ (KNU9) Rk(A) ⊆ Rl(Rm(A)), A ∈ P(U), 1 ≤ l ≤ k≤m.

Definition 15. Given an arbitrary binary relation R on U . For any set X ∈
F(U) and k ≥ 1, we may define a pair of lower and upper rough fuzzy approxi-
mations of X with respect to the k-step neighborhood system as follows:

Rk(X)(x) =
∧

y∈rk(x)

X(y), x ∈ U,

Rk(X)(x) =
∨

y∈rk(x)

X(y), x ∈ U.

Rk and Rk are referred to as the k-step lower and upper rough fuzzy approxima-
tion operators respectively.

If 1 ≤ l ≤ k, it is easy to verify that

(1) Rk(A) ⊆ Rl(A), ∀A ∈ F(U),
(2) Rl(A) ⊆ Rk(A), ∀A ∈ F(U).

In terms of Theorems 7, 18, and 19, we can verified the following theorem
which shows that the structure of information granulation generated via R can
be equivalently characterized by the properties of multi-step rough fuzzy ap-
proximation operators.
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Theorem 20. Let R be an arbitrary binary crisp relation on U . Then

R is serial ⇐⇒ (KFL0) Rk(∅) = ∅, k ≥ 1,

⇐⇒ (KFU0) Rk(U) = U, k ≥ 1,

⇐⇒ (KFLU0)Rk(A) ⊆ Rk(A), k ≥ 1,

⇐⇒ (KFL0)′ Rk(α̂) = α̂, α ∈ I, k ≥ 1,

⇐⇒ (KFU0)′ Rk(α̂) = α̂, α ∈ I, k ≥ 1,
R is reflexive ⇐⇒ (KFL6) Rk(A) ⊆ A, A ∈ F(U), k ≥ 1,

⇐⇒ (KFU6) A ⊆ Rk(A), A ∈ F(U), k ≥ 1,

R is symmetric ⇐⇒ (KFL7) Rl(Rk(A)) ⊆ A, A ∈ F(U), 1 ≤ l ≤ k,

⇐⇒ (KFU7) A ⊆ Rl(Rk(A)), A ∈ F(U), 1 ≤ l ≤ k,
R is transitive ⇐⇒ (KFL8) Rk(A) ⊆ Rl(Rk(A)), A ∈ F(U), 1 ≤ l ≤ k,

⇐⇒ (KFU8) Rk(Rl(A)) ⊆ Rk(A), A ∈ F(U), 1 ≤ l ≤ k,

R is Euclidean ⇐⇒ (KFL9) Rl(Rm(A)) ⊆ Rk(A), A ∈ F(U), 1 ≤ l ≤ k≤m,

⇐⇒ (KFU9) Rk(A) ⊆ Rl(Rm(A)), A ∈ F(U), 1 ≤ l ≤ k≤m.

8 Conclusion

In this paper, we have reviewed and studied generalized rough fuzzy approxi-
mation operators. In our constructive method, generalized rough fuzzy sets are
derived from a crisp approximation space. By the representation theorem, rough
fuzzy approximation operators can be composed by a family of crisp approxima-
tion operators. By the axiomatic approach, rough fuzzy approximation operators
can be characterized by axioms. Axiom sets of fuzzy approximation operators
guarantee the existence of certain types of crisp relations producing the same
operators. We have also established the relationship between rough fuzzy approx-
imation operators and fuzzy topological spaces. Moreover, relationships between
rough fuzzy approximation operators and fuzzy belief and fuzzy plausibility func-
tions have been established. Multi-step rough fuzzy approximation operators can
also be obtained by a neighborhood system derived from a binary relation. The
relationships between binary relations and multi-step rough fuzzy approximation
operators have been examined. This work may be viewed as the extension of Yao
[59,60,61,64], and it may also be treated as a completion of Thiele [42,43,44]. It
appears that our constructive approaches will turn out to be more useful for
practical applications of the rough set theory while the axiomatic approaches
will help us to gain much more insights into the mathematical structures of
fuzzy approximation operators. Proving the independence of axiom sets is still
an open problem. That is to say, finding the minimal axiom sets to characterize
various rough fuzzy set algebras is still an outstanding problem.
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Abstract. A basic notion shared by rough set analysis and formal concept anal-
ysis is the definability of a set of objects based on a set of properties. The two
theories can be compared, combined and applied to each other based on defin-
ability. In this paper, the notion of rough set approximations is introduced into
formal concept analysis. Rough set approximations are defined by using a sys-
tem of definable sets. The similar idea can be used in formal concept analysis.
The families of the sets of objects and the sets of properties established in for-
mal concept analysis are viewed as two systems of definable sets. The approxi-
mation operators are then formulated with respect to the systems. Two types of
approximation operators, with respect to lattice-theoretic and set-theoretic inter-
pretations, are studied. The results provide a better understanding of data analysis
using rough set analysis and formal concept analysis.

1 Introduction

Definability deals with whether and how a set can be defined in order to be analyzed
and computed [38]. A comparative examination of rough set analysis and formal con-
cept analysis shows that each of them deals with a particular type of definability. While
formal concept analysis focuses on sets of objects that can be defined by conjunctions
of properties, rough set analysis focuses on disjunction of properties [33]. The common
notion of definability links the two theories together. One can immediately adopt ideas
from one to the other [33,34]. On the one hand, the notions of formal concepts and for-
mal concept lattices can be introduced into rough set analysis by considering different
types of formal concepts [34]. On the other hand, rough set approximation operators
can be introduced into formal concept analysis by considering a different type of defin-
ability [8,35]. The combination of the two theories would produce new tools for data
analysis.

An underlying notion of rough set analysis is the indiscernibility of objects [12,13].
By modelling indiscernibility as an equivalence relation, one can partition a finite uni-
verse of objects into a family of pair-wise disjoint subsets called a partition. The parti-
tion provides a granulated view of the universe. An equivalence class is considered as
a whole, instead of many individuals, and is viewed as an elementary definable subset.
In other words, one can only observe, measure, or characterize the equivalence classes.
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The empty set and unions of equivalence classes are also treated as definable subsets.
In general, the system of such definable subsets is only a proper subset of the power
set of the universe. Consequently, an arbitrary subset of universe may not necessarily
be definable. It can be approximated from below and above by a pair of maximal and
minimal definable subsets.

Under the rough set approximation, there is a close connection between definabil-
ity and approximation. A definable set of the universe of objects must have the same
approximations [2]. That is, a set of objects is definable if and only if its lower approx-
imation equals to its upper approximation.

Formal concept analysis is developed based on a formal context given by a binary
relation between a set of objects and a set of properties. From a formal context, one
can construct (objects, properties) pairs known as the formal concepts [6,22]. The set of
objects of a formal concept is referred to as the extension, and the set of properties as
the intension. They uniquely determine each other. The family of all formal concepts is
a complete lattice. The extension of a formal concept can be viewed as a definable set
of objects, although in a sense different from that of rough set analysis [33,34]. In fact,
the extension of a formal concept is a set of indiscernible objects with respect to the
intension. Based on the properties in the intension, all objects in the extension cannot
be distinguished. Furthermore, all objects in the extension share all the properties in the
intension. The collection of all the extensions, sets of objects, can be considered as a
different system of definable sets [35]. An arbitrary set of objects may not be an exten-
sion of a formal concept. The sets of objects that are not extensions of formal concepts
are regarded as undefinable sets. Therefore, in formal concept analysis, a different type
of definability is proposed.

Saquer and Deogun proposed to approximate a set of objects, a set of properties,
and a pair of a set of objects and a set of properties, based on a formal concept lattice
[16,17]. Hu et al. proposed a method to approximate a set of objects and a set of prop-
erties by using join- and meet-irreducible formal concepts with respect to set-theoretic
operations [8]. However, their formulations are slightly flawed and fail to achieve such
a goal. It stems from a mixed-up of the lattice-theoretic operators and set-theoretic op-
erators. To avoid their limitation, a clear separation of two types of approximations
is needed. In this paper, we propose a framework to examine the issues of rough set
approximations within formal concept analysis. We concentrate on the interpretations
and formulations of various notions. Two systems are examined for the definitions of
approximations, the formal concept lattice and the system of extensions of all formal
concepts.

The rest of the paper is organized as follows. In Section 2, we discuss three for-
mulations of rough set approximations, subsystem based formulation, granule based
formulation and element based formulation. In Section 3, formal concept analysis is
reviewed. In Section 4, we apply the notion of rough set approximations into formal
concept analysis. Two systems of definable sets are established. Based on each sys-
tem, different definitions of approximations are examined. Section 5 discusses the ex-
isting studies and investigates their differences and connections from the viewpoint of
approximations.
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2 Rough Set Approximations

The rough set theory is an extension of classical set theory with two additional ap-
proximation operators [28]. It is a useful theory and tool for data analysis. Various
formulations of rough set approximations have been proposed and studied [30,31,32].
In this section, we review the subsystem based formulation, granule based formula-
tion and element based formulation, respectively. In the subsystem based formulation,
a subsystem of the power set of a universe is first constructed and the approximation
operators are then defined using the subsystem. In the granule based formulation, equiv-
alence classes are considered as the elementary definable sets, and approximations can
be defined directly by using equivalence classes. In the element based formulation, the
individual objects in the equivalence classes are used to calculate approximations of a
set of objects.

Suppose U is a finite and nonempty universe of objects. Let E ⊆ U × U be an
equivalence relation on U . The equivalence relation divides the universe into a family
of pair-wise disjoint subsets, called the partition of the universe and denoted by U/E.
The pair apr = (U,E) is referred to as an approximation space.

An approximation space induces a granulated view of the universe. For an object
x ∈ U , the equivalence class containing x is given by:

[x]E = {y | xEy}. (1)

Objects in [x]E are indistinguishable from x. One is therefore forced to consider [x]E
as a whole. In other words, under an equivalence relation, equivalence classes are the
smallest non-empty observable, measurable, or definable subsets of U . By extending the
definability of equivalence classes, we assume that the empty set and unions of some
equivalence classes are definable. The family of definable subsets contains the empty
set ∅ and is closed under set complement, intersection and union. It is an σ-algebra
σ(U/E) ⊆ 2U with basis U/E, where 2U is the power set of U .

A set of objects not in σ(U/E) is said to be undefinable. An undefinable set must be
approximated from below and above by a pair of definable sets.

Definition 1. (Subsystem based definition) In an approximation space apr = (U,E),
a pair of approximation operators, apr, apr : 2U −→ 2U , is defined by:

apr(A) =
⋃

{X | X ∈ σ(U/E), X ⊆ A},

apr(A) =
⋂

{X | X ∈ σ(U/E), A ⊆ X}. (2)

The lower approximation apr(A) ∈ σ(U/E) is the greatest definable set contained in
A, and the upper approximation apr(A) ∈ σ(U/E) is the least definable set containing
A.

Alternatively, the approximation operators can also be defined by using equivalence
classes.
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Definition 2. (Granule based definition) In an approximation space apr = (U,E), a
pair of approximation operators, apr, apr : 2U −→ 2U , is defined by:

apr(A) =
⋃

{[x]E | [x]E ∈ U/E, [x]E ⊆ A},

apr(A) =
⋃

{[x]E | [x]E ∈ U/E, A ∩ [x]E �= ∅}. (3)

The lower approximation is the union of equivalence classes that are subsets of A,
and the upper approximation is the union of equivalence classes that have a non-empty
intersection with A.

The element based definition is another way to define the lower and upper approxi-
mations of a set of objects.

Definition 3. (Element based definition) In an approximation space apr = (U,E), a
pair of approximation operators, apr, apr : 2U −→ 2U , is defined by:

apr(A) = {x | x ∈ U, [x]E ⊆ A},
apr(A) = {x | x ∈ U,A ∩ [x]E �= ∅}. (4)

The lower approximation is the set of objects whose equivalence classes are subsets
of A. The upper approximation is the set of objects whose equivalence classes have
non-empty intersections with A.

The three formulations are equivalent, but with different forms and interpretations
[32]. The lower and upper approximation operators have the following properties: for
sets of objects A, A1 and A2,

(i). apr(A) = (apr(Ac))c,

apr(A) = (apr(Ac))c;
(ii). apr(A1 ∩A2) = apr(A1) ∩ apr(A2),

apr(A1 ∪A2) = apr(A1) ∪ apr(A2);
(iii). apr(A) ⊆ A ⊆ apr(A);
(iv). apr(apr(A)) = apr(A),

apr(apr(A)) = apr(A);
(v). apr(apr(A)) = apr(A),

apr(apr(A)) = apr(A).

Property (i) states that the approximation operators are dual operators with respect to
set complement c. Property (ii) states that the lower approximation operator is distribu-
tive over set intersection ∩, and the upper approximation operator is distributive over
set union ∪. By property (iii), a set lies within its lower and upper approximations.
Properties (iv) and (v) deal with the compositions of lower and upper approximation
operators. The result of the composition of a sequence of lower and upper approxi-
mation operators is the same as the application of the approximation operator closest
to A.

As shown by the following theorem, the approximation operators truthfully reflect
the intuitive understanding of the notion of definability [12,35].
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Theorem 1. In an approximation space apr = (U,E), for a set of objectsA, apr(A) =
apr(A) if and only if A ∈ σ(U/E).

An important implication of the theorem is that for an undefinable set A ⊆ U , we have
apr(A) �= apr(A). In fact, apr(A) is a proper subset of apr(A), namely, apr(A) ⊂
apr(A).

The basic ideas of subsystem based formulation can be generalized by consider-
ing different subsystems that represent different types of definability [35]. The granule
based formulation and element based formulation can also be generalized by using dif-
ferent types of definable granules [29,32,37].

3 Formal Concept Analysis

Formal concept analysis deals with visual presentation and analysis of data [6,22]. It
focuses on the definability of a set of objects based on a set of properties, and vice
versa.

Let U and V be any two finite sets. Elements of U are called objects, and elements of
V are called properties. The relationships between objects and properties are described
by a binary relation R between U and V , which is a subset of the Cartesian product
U × V . For a pair of elements x ∈ U and y ∈ V , if (x, y) ∈ R, written as xRy, we
say that x has the property y, or the property y is possessed by object x. The triplet
(U, V,R) is called a formal context. By the terminology of rough set analysis, a formal
context is in fact a binary information table.

Based on the binary relation, we associate a set of properties to an object. An object
x ∈ U has the set of properties:

xR = {y ∈ V | xRy} ⊆ V. (5)

Similarly, a property y is possessed by the set of objects:

Ry = {x ∈ U | xRy} ⊆ U. (6)

By extending these notations, we can establish relationships between sets of objects and
sets of properties. This leads to two operators, one from 2U to 2V and the other from
2V to 2U .

Definition 4. Suppose (U, V,R) is a formal context. For a set of objects A ⊆ U , we
associate it with a set of properties:

A∗ = {y ∈ V | ∀x ∈ U(x ∈ A =⇒ xRy)}
= {y ∈ V | A ⊆ Ry}
=
⋂

x∈A

xR. (7)

For a set of properties B ⊆ V , we associate it with a set of objects:

B∗ = {x ∈ U | ∀y ∈ V (y ∈ B =⇒ xRy)}
= {x ∈ U | B ⊆ xR}
=
⋂

y∈B

Ry. (8)
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For simplicity, the same symbol is used for both operators. The actual role of the
operators can be easily seen from the context.

By definition, {x}∗ = xR is the set of properties possessed by x, and {y}∗ = Ry
is the set of objects having property y. For a set of objects A, A∗ is the maximal set of
properties shared by all objects in A. For a set of properties B, B∗ is the maximal set
of objects that have all properties in B.

The operators ∗ have the following properties [6,22]: for A,A1, A2 ⊆ U and B,B1,
B2 ⊆ V ,

(1). A1 ⊆ A2 =⇒ A∗
1 ⊇ A∗

2,

B1 ⊆ B2 =⇒ B∗
1 ⊇ B∗

2 ,

(2). A ⊆ A∗∗,
B ⊆ B∗∗,

(3). A∗∗∗ = A∗,
B∗∗∗ = B∗,

(4). (A1 ∪A2)∗ = A∗
1 ∩A∗

2,

(B1 ∪B2)∗ = B∗
1 ∩B∗

2 .

In formal concept analysis, one is interested in a pair of a set of objects and a set of
properties that uniquely define each other. More specifically, for (A,B) = (B∗, A∗),
we have [33]:

x ∈ A ⇐⇒ x ∈ B∗

⇐⇒ B ⊆ xR

⇐⇒
∧

y∈B

xRy;

∧
x∈A

xRy ⇐⇒ A ⊆ Ry

⇐⇒ y ∈ A∗

⇐⇒ y ∈ B. (9)

That is, the set of objects A is defined based on the set of properties B, and vice versa.
This type of definability leads to the introduction of the notion of formal concepts
[6,22].

Definition 5. A pair (A,B), A ⊆ U , B ⊆ V , is called a formal concept of the context
(U, V,R), if A = B∗ and B = A∗. Furthermore, extent(A,B) = A is called the
extension of the concept, and intent(A,B) = B is called the intension of the concept.

Definition 6. For an object x, the pair ({x}∗∗, {x}∗) is a formal concept and called an
object concept. For a property y, the pair ({y}∗, {y}∗∗) is a formal concept and called
a property concept.

The set of all formal concepts forms a complete lattice called a concept lattice, denoted
by L(U, V,R) or simply L. The meet and join of the lattice are characterized by the
following basic theorem of concept lattices [6,22].
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Theorem 2. The formal concept lattice L is a complete lattice in which the meet and
join are given by: ∧

t∈T

(At, Bt) = (
⋂
t∈T

At, (
⋃
t∈T

Bt)∗∗),∨
t∈T

(At, Bt) = ((
⋃
t∈T

At)∗∗,
⋂
t∈T

Bt). (10)

where T is an index set and for every t ∈ T , (At, Bt) is a formal concept.

The order relation of the lattice can be defined based on the set inclusion relation [6,22].

Definition 7. For two formal concepts (A1, B1) and (A2, B2), (A1, B1) is a sub-con-
cept of (A2, B2), written (A1, B1) + (A2, B2), and (A2, B2) is a super-concept of
(A1, B1), if and only if A1 ⊆ A2, or equivalently, if and only if B2 ⊆ B1.

A more general (specific) concept is characterized by a larger (smaller) set of objects
that share a smaller (larger) set of properties.

The lattice-theoretic operators of meet (∧) and join (∨) of the concept lattice are
defined based on the set-theoretic operators of intersection (∩), union (∪) and the oper-
ators ∗. However, they are not the same. An intersection of extensions (intensions) of a
family of formal concepts is the extension (intension) of a formal concept. A union of
extensions (intensions) of a family of formal concepts is not necessarily the extension
(intension) of a formal concept.

Example 1. The ideas of formal concept analysis can be illustrated by an example taken
from [35]. Table 1 gives a formal context, where the meaning of each property is given
as follows: a: needs water to live; b: lives in water; c: lives on land; d: needs chlorophyll
to produce food; e: two seed leaves; f: one seed leaf; g: can move around; h: has limbs;
i: suckles its offspring. Figure 1 gives the corresponding concept lattice. Consider two
formal concepts ({3, 6}, {a, b, c}) and ({5, 6, 7, 8}, {a, d}). Their meet is the formal
concept:

({3, 6} ∩ {5, 6, 7, 8}, ({a, b, c}∪ {a, d})∗∗) = ({6}, {a, b, c, d, f}),

and their join is the formal concept:

(({3, 6} ∪ {5, 6, 7, 8})∗∗, {a, b, c} ∩ {a, d}) = ({1, 2, 3, 4, 5, 6, 7, 8}, {a}).

The intersection of extensions of two concepts is the extension of their meet, and the
intersection of the intensions is the intension of their join. On the other hand, the union
of extensions of the two concepts is {3, 5, 6, 7, 8}, which is not the extension of any
formal concept. The union of the intensions is {a, b, c, d}, which is not the intension of
any formal concept.
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Table 1. A formal context taken from [6]

a b c d e f g h i

1. Leech × × ×
2. Bream × × × ×
3. Frog × × × × ×
4. Dog × × × × ×
5. Spike-weed × × × ×
6. Reed × × × × ×
7. Bean × × × ×
8. Maize × × × ×

(1,2,3,4,5,6,7,8;a)(1,2,3,4,5,6,7,8;a)

(1,2,3,5,6;a,b)(1,2,3,5,6;a,b) (3,4,6,7,8;a,c)(3,4,6,7,8;a,c)

(3,6;a,b,c)(3,6;a,b,c)

(5,6,7,8;a,d)(5,6,7,8;a,d)

(5,6;a,b,d,f)(5,6;a,b,d,f)

(6,7,8;a,c,d)(6,7,8;a,c,d)

(6;a,b,c,d,f)(6;a,b,c,d,f) (7;a,c,d,e)(7;a,c,d,e)

(;a,b,c,d,e,f,g,h,i)(;a,b,c,d,e,f,g,h,i)

(5,6,8;a,d,f)(5,6,8;a,d,f)

(6,8;a,c,d,f)(6,8;a,c,d,f)

(1,2,3,4;a,g)(1,2,3,4;a,g)

(1,2,3;a,b,g)(1,2,3;a,b,g)

(3,4;a,c,g,h)(3,4;a,c,g,h)

(3;a,b,c,g,h)(3;a,b,c,g,h)

(2,3,4;a,g,h)(2,3,4;a,g,h)

(2,3;a,b,g,h)(2,3;a,b,g,h)

(4;a,c,g,h,i)(4;a,c,g,h,i)

Fig. 1. Concept lattice for the context of Table 1, produced by “Formal Concept Calculator”
(developed by Sören Auer, http://www.advis.de/soeren/fca/)

4 Approximations in Formal Concept Analysis

A formal concept is a pair of a definable set of objects and a definable set of properties,
which uniquely determine each other. The concept lattice is the family of all concepts
with respect to a formal context. Given an arbitrary subset of the universe of objects,
it may not be the extension of a formal concept. The set can therefore be viewed as an
undefinable set of objects. Following rough sets analysis, such a subset of the universe
of objects can be approximated by definable sets of objects, namely, the extensions of
formal concepts.

4.1 Approximations Based on Lattice-Theoretic Operators

One can develop the approximation operators similar to the subsystem based formula-
tion of rough set analysis. The concept lattice is used as the system of definable con-
cepts, and lattice-theoretic operators are used to define approximation operators.
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For a set of objects A ⊆ U , suppose we want to approximate it by the extensions of a
pair of formal concepts in the concept lattice. We can extend Definition 1 to achieve this
goal. In equation (2), set-theoretic operators ∩ and ∪ are replaced by lattice-theoretic
operators ∧ and ∨, the subsystem σ(U/E) by lattice L, and definable sets of objects
by extensions of formal concepts. The extensions of the resulting two concepts are the
approximations of A.

Definition 8. (Lattice-theoretic definition) For a set of objects A ⊆ U , its lower and
upper approximations are defined by:

lapr(A) = extent(
∨
{(X,Y ) | (X,Y ) ∈ L,X ⊆ A})

= (
⋃
{X | (X,Y ) ∈ L,X ⊆ A})∗∗,

lapr(A) = extent(
∧
{(X,Y ) | (X,Y ) ∈ L,A ⊆ X})

=
⋂
{X | (X,Y ) ∈ L,A ⊆ X}. (11)

The lower approximation of a set of objects A is the extension of the formal concept
(lapr(A), (lapr(A))∗), and the upper approximation is the extension of the formal con-
cept (lapr(A), (lapr(A))∗). The concept (lapr(A), (lapr(A))∗) is the supremum of
those concepts whose extensions are subsets of A, and (lapr(A), (lapr(A))∗) is the
infimum of those concepts whose extensions are supersets of A.

For a formal concept (X,Y ), Xc may not necessarily be the extension of a formal
concept. The concept lattice in general is not a complemented lattice. The approxima-
tion operators lapr and lapr are not necessarily dual operators.

Recall that the intersection of extensions is the extension of a concept, but the union of
extensions may not be the extension of a concept. It follows that (lapr(A), (lapr(A))∗)
is the smallest concept whose extension is a superset of A. However, the concept
(lapr(A), (lapr(A))∗) may not be the largest concept whose extension is a subset of A.
It may happen that A ⊆ lapr(A). That is, the lower approximation of A may not be a
subset of A. The new approximation operators do not satisfy properties (i), (ii) and (iii).
With respect to property (ii), they only satisfy a weak version known as monotonicity
with respect to set inclusion:

(vi). A1 ⊆ A2 =⇒ lapr(A1) ⊆ lapr(A2),

A1 ⊆ A2 =⇒ lapr(A1) ⊆ lapr(A2).

The following weak versions of property (iii) are satisfied:

(vii). lapr(A) ⊆ lapr(A),

(viii). A ⊆ lapr(A).

Both lapr(A) and lapr(A) are extensions of formal concepts. It follows that the oper-

ators lapr and lapr satisfy properties (iv) and (v).
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Example 2. Given the concept lattice in Figure 1, consider a set of objectsA={3, 5, 6}.
The family of subsets of A that are extensions of concepts is:

{ ∅, {3}, {6}, {3, 6}, {5, 6} }.
The corresponding family of concepts is:

{ (∅, {a, b, c, d, e, f, g, h, i}), ({3}, {a, b, c, g, h}), ({6}, {a, b, c, d, f}),
({3, 6}, {a, b, c}), ({5, 6}, {a, b, d, f}) }.

Their supremum is ({1, 2, 3, 5, 6}, {a, b}). The lower approximation is lapr(A) =
{1, 2, 3, 5, 6}, which is indeed a superset of A. The family of supersets of A that are
extensions of concepts is:

{{1, 2, 3, 5, 6}, {1, 2, 3, 4, 5, 6, 7, 8}}.
The corresponding family of concepts is:

{ ({1, 2, 3, 5, 6}, {a, b}), ({1, 2, 3, 4, 5, 6, 7, 8}, {a}) }.
Their infimum is ({1, 2, 3, 5, 6}, {a, b}). The upper approximation is lapr(A) = {1, 2,
3, 5, 6}, which is the smallest concept whose extension contains A. Although A is not
an extension of a concept, it has the same lower and upper approximations, in contrast
with Theorem 1.

With a finite set of objects and a finite set of properties, we obtain a finite lattice. The
meet-irreducible and join-irreducible concepts in a concept lattice can be used as the
elementary concepts. A concept in a finite concept lattice can be expressed as a join of a
finite number of join-irreducible concepts and can also be expressed as a meet of a finite
number of meet-irreducible concepts [1]. The extensions of meet-irreducible and join-
irreducible concepts are treated as elementary definable sets of objects. Approximation
operators can therefore be defined based on those elementary definable subsets.

The meet-irreducible and join-irreducible concepts can be defined as follows [1].

Definition 9. In a concept lattice L, a concept (A,B) ∈ L is called join-irreducible
if and only if for all (X1, Y1), (X2, Y2) ∈ L, (A,B) = (X1, Y1) ∨ (X2, Y2) implies
(A,B) = (X1, Y1) or (A,B) = (X2, Y2). The dual notion is called meet-irreducible
for a concept (A,B) ∈ L if and only if for all (X1, Y1), (X2, Y2) ∈ L, (A,B) =
(X1, Y1) ∧ (X2, Y2) implies (A,B) = (X1, Y1) or (A,B) = (X2, Y2).

Let J(L) be the set of all join-irreducible concepts and M(L) be the set of all meet-
irreducible concepts in L. A concept (A,B) can be expressed by the join of join-
irreducible concepts that are the sub-concepts of (A,B) in J(L). That is

(A,B) =
∨

{(X,Y ) | (X,Y ) ∈ J(L), (X,Y ) + (A,B)}. (12)

A concept (A,B) can also be expressed by the meet of meet-irreducible concepts that
are the super-concepts of (A,B) in M(L). That is

(A,B) =
∧
{(X,Y ) | (X,Y ) ∈ M(L), (A,B) + (X,Y )}. (13)

The lower and upper approximations of a set of objects can be defined based on the
extensions of join-irreducible and meet-irreducible concepts [8].
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Definition 10. For a set of objects A ⊆ U , its lower and upper approximations are
defined by:

lapr(A) = extent(
∨

{(X,Y ) | (X,Y ) ∈ J(L), X ⊆ A})

= (
⋃

{X | (X,Y ) ∈ J(L), X ⊆ A})∗∗,

lapr(A) = extent(
∧

{(X,Y ) | (X,Y ) ∈ M(L), A ⊆ X})

=
⋂

{X | (X,Y ) ∈ M(L), A ⊆ X}. (14)

Ganter and Wille have shown that a formal concept in a concept lattice can be expressed
by the join of object concepts in which the object is included in the extension of the
formal concept [6]. That is, for a formal concept (A,B),

(A,B) =
∨
{({x}∗∗, {x}∗) | x ∈ A}.

A formal concept can also be expressed by the meet of property concepts in which the
property is included in the intension of the formal concept [6]. That is, for a formal
concept (A,B),

(A,B) =
∧

{({y}∗, {y}∗∗) | y ∈ B}.

Therefore, the lower and upper approximations of a set of objects can be defined based
on the extensions of object and property concepts.

Definition 11. For a set of objects A ⊆ U , its lower and upper approximations are
defined by object and property concepts:

lapr(A) = extent(
∨
{({x}∗∗, {x}∗) | x ∈ U, {x}∗∗ ⊆ A}),

= (
⋃

{{x}∗∗ | x ∈ U, x ∈ A})∗∗,

lapr(A) = extent(
∧
{({y}∗, {y}∗∗) | y ∈ V,A ⊆ {y}∗}),

=
⋂
{{y}∗ | y ∈ V,A ⊆ {y}∗}. (15)

In fact, this definition can be considered as the extension of granule based definition of
rough set approximations in Definition 2.

These definitions of lower and upper approximations are the same as the ones de-
fined in Definition 8. They are regarded as equivalent definitions with slightly different
interpretations.

Example 3. In the concept lattice in Figure 1, consider the same set of objects A =
{3, 5, 6} in Example 2. The family of join-irreducible concepts is:

({1, 2, 3}, {a, b, g}), ({2, 3}, {a, b, g, h}),
({3}, {a, b, c, g, h}), ({4}, {a, c, g, h, i}),
({5, 6}, {a, b, d, f}), ({6}, {a, b, c, d, f}),
({7}, {a, c, d, e}), ({6, 8}, {a, c, d, f}),
(∅, {a, b, c, d, e, f, g, h, i}).
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The join-irreducible concepts whose extensions are subsets of A are:

({3}, {a, b, c, g, h}), ({5, 6}, {a, b, d, f}),
({6}, {a, b, c, d, f}), (∅, {a, b, c, d, e, f, g, h, i}).

Thus, according to the Definition 10, the lower approximation is

lapr(A) = extent(({3}, {a, b, c, g, h})
∨

({5, 6}, {a, b, d, f})∨
({6}, {a, b, c, d, f})

∨
(∅, {a, b, c, d, e, f, g, h, i}))

= {1, 2, 3, 5, 6}.

The family of meet-irreducible concepts is:

({1, 2, 3, 4, 5, 6, 7, 8}, {a}), ({1, 2, 3, 5, 6}, {a, b}),
({3, 4, 6, 7, 8}, {a, c}), ({5, 6, 7, 8}, {a, d}),
({1, 2, 3, 4}, {a, g}), ({5, 6, 8}, {a, d, f}),
({2, 3, 4}, {a, g, h}), ({7}, {a, c, d, e}),
({4}, {a, c, g, h, i}).

The meet-irreducible concepts whose extensions are supersets of A are:

({1, 2, 3, 4, 5, 6, 7, 8}, {a}), ({1, 2, 3, 5, 6}, {a, b}).

The upper approximation is

lapr(A) = extent(({1, 2, 3, 4, 5, 6, 7, 8}, {a})
∧

({1, 2, 3, 5, 6}, {a, b})),
= {1, 2, 3, 5, 6}.

For the set of objects A = {3, 5, 6}, its lower approximation equals to its upper ap-
proximation. One can see that approximations based on lattice-theoretic operators have
some undesirable properties. Other possible formulations are needed.

The upper approximation operator lapr is related to the operator ∗. For any set of objects
A ⊆ U , we can derive a set of properties A∗. For the set of properties A∗, we can
derive another set of objects A∗∗. By property (3), (A∗∗, A∗) is a formal concept. By
property (2), we have A ⊆ A∗∗. In fact, (A∗∗, A∗) is the smallest formal concept whose
extension contains A. That is, for a set of objects A ⊆ U , its upper approximation is
lapr(A) = A∗∗.

Thus we can only obtain a weak version of Theorem 1.

Theorem 3. In a concept lattice L(U, V,R), if A is an extension of a concept, i.e.,
(A,A∗) is a concept, then lapr(A) = lapr(A).

As shown by the examples, the reverse implication in the theorem is not true. This is a
limitation of the formulation based on lattice-theoretic operators.

The ideas of approximating a set of objects can be used to define operators that
approximate a set of properties. In contract to the approximations of a set of objects, the
lower approximation is defined by using meet, and the upper approximation is defined
by using join.
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Definition 12. (Lattice-theoretic definition) For a set of properties B ⊆ V , its lower
and upper approximations are defined by:

lapr(B) = intent(
∧
{(X,Y ) | (X,Y ) ∈ L, Y ⊆ B})

= (
⋃
{Y | (X,Y ) ∈ L, Y ⊆ B})∗∗,

lapr(B) = intent(
∨
{(X,Y ) | (X,Y ) ∈ L,B ⊆ Y })

=
⋂
{Y | (X,Y ) ∈ L,B ⊆ Y }. (16)

Definition 13. For a set of properties B ⊆ V , its lower and upper approximations
based on the sets of join-irreducible and meet-irreducible concepts are defined by:

lapr(B) = intent(
∧
{(X,Y ) | (X,Y ) ∈ M(L), Y ⊆ B})

= (
⋃
{Y | (X,Y ) ∈ M(L), Y ⊆ B})∗∗,

lapr(B) = intent(
∨
{(X,Y ) | (X,Y ) ∈ J(L), B ⊆ Y })

=
⋂
{Y | (X,Y ) ∈ J(L), B ⊆ Y }. (17)

Definition 14. For a set of properties B ⊆ V , its lower and upper approximations are
defined by object and property concepts:

lapr(B) = intent(
∧
{({y}∗, {y}∗∗) | y ∈ V, {y}∗∗ ⊆ B}),

= (
⋃

{{y}∗∗ | y ∈ V, y ∈ B})∗∗,

lapr(B) = intent(
∨
{({x}∗∗, {x}∗) | x ∈ U,B ⊆ {x}∗}),

=
⋂
{{x}∗ | x ∈ U,B ⊆ {x}∗}. (18)

The lower approximation of a set of properties B is the intension of the formal con-
cept ((lapr(B))∗, lapr(B)), and the upper approximation is the intension of the formal
concept ((lapr(B))∗, lapr(B)).

4.2 Approximations Based on Set-Theoretic Operators

By comparing with the standard rough set approximations, one can observe two prob-
lems of the approximation operators defined by using lattice-theoretic operators. The
lower approximation of a set of objects A is not necessarily a subset of A. Although a
set of objects A is undefinable, i.e., A is not the extension of a formal concept, its lower
and upper approximations may be the same. In order to avoid these shortcomings, we
present another formulation by using set-theoretic operators.

The extension of a formal concept is a definable set of objects. A system of definable
sets can be derived from a concept lattice.

Definition 15. For a formal concept lattice L, the family of all extensions is given by:

EXT (L) = {extent(X,Y ) | (X,Y ) ∈ L}. (19)



298 Y. Yao and Y. Chen

The system EXT (L) contains the entire set U and is closed under intersection. Thus,
EXT (L) is a closure system [3]. Although one can define the upper approximation by
extending Definition 1, one cannot define the lower approximation similarly. Neverthe-
less, one can still keep the intuitive interpretations of lower and upper approximations.
That is, the lower approximation is a maximal set in EXT (L) that are subsets of A, and
the upper approximation is a minimal set in EXT (L) that are supersets of A. While an
upper approximation is unique (e.g., there is a smallest set in EXT (L) containing A),
the maximal set contained in A is generally not unique.

Definition 16. (Set-theoretic definition) For a set of objects A ⊆ U , its upper approx-
imation is defined by:

sapr(A) =
⋂
{X | X ∈ EXT (L), A ⊆ X}, (20)

and its lower approximation is a family of sets:

sapr(A) = {X | X ∈ EXT (L), X ⊆ A,

∀X ′ ∈ EXT (L)(X ⊂ X ′ =⇒ X ′ �⊆ A)}. (21)

The upper approximation sapr(A) is the same as lapr(A), namely, sapr(A) = lapr
(A). However, the lower approximation is different. An important feature is that a set
can be approximated from below by several definable sets of objects. In general, for
A′ ∈ sapr(A), we have A′ ⊆ lapr(A).

Example 4. In the concept lattice L of Figure 1, the family of all extensions EXT (L)
are:

EXT (L) = { ∅, {3}, {4}, {6}, {7},
{2, 3}, {3, 4}, {3, 6}, {5, 6}, {6, 8},
{1, 2, 3}, {2, 3, 4}, {6, 7, 8}, {5, 6, 8},
{1, 2, 3, 4}, {5, 6, 7, 8},
{1, 2, 3, 5, 6}, {3, 4, 6, 7, 8},
{1, 2, 3, 4, 5, 6, 7, 8} }.

For a set of objects A = {3, 5, 6}, the lower approximation is given by sapr(A) =
{{3, 6}, {5, 6}}, which is a family of sets of objects. The upper approximation is given
by sapr(A) = {1, 2, 3, 5, 6}, which is a unique set of objects.

Since a concept in a finite concept lattice can be expressed as a meet of a finite num-
ber of meet-irreducible concepts, the family of extensions of meet-irreducible concepts
can be used to generate the extensions of all concepts in a finite concept lattice by
simply using set intersection. Hence, one can use the family of the extensions of all
meet-irreducible concepts to replace the system of the extensions of all concepts in the
concept lattice.

Let EXT (M(L)) denote the family of extensions of all the meet-irreducible con-
cepts. EXT (M(L)) is a subset of EXT (L). The extensions of concepts in the system
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EXT (M(L)) are treated as elementary definable sets of objects. Therefore, the upper
approximation of a set of objects is the intersection of extensions in EXT (M(L)) that
are supersets of the set.

Definition 17. For a set of objects A ⊆ U , its upper approximation is defined by:

sapr(A) =
⋂
{X | X ∈ EXT (M(L)), A ⊆ X}. (22)

This definition of upper approximation is the same as Definition 16. They are equivalent
but in different forms.

The lower approximation of a set of objects cannot be defined based on the system
EXT (M(L)). The meet of some meet-irreducible concepts, whose extensions are sub-
sets of a set of objects, is not necessarily the largest set that is contained in the set of
objects.

With respect to property (iii), we have:

(ix). A′ ⊆ A ⊆ sapr(A), for all A′ ∈ sapr(A).

That is, A lies within any of its lower approximation and upper approximation. For the
set-theoretic formulation, we have a theorem corresponding to Theorem 1.

Theorem 4. In a concept lattice L(U, V,R), for a subset of the universe of objects
A ⊆ U , sapr(A) = A and sapr(A) = {A}, if and only if A is an extension of a
concept.

In the new formulation, we resolve the difficulties with the approximation operators
lapr and lapr. The lower approximation offers more insights into the notion of ap-
proximations. In some situations, the union of a family of definable sets is not neces-
sarily a definable set. It may not be reasonable to insist on a unique approximation.
The approximation of a set by a family of sets may provide a better characterization of
the set.

5 Related Works

In this section, we provide a review of the existing studies on the comparisons and
combinations of rough set analysis and formal concept analysis and their relevance to
the present study.

5.1 A Brief Review of Existing Studies

Broadly, we can classify existing studies into three groups. The first group may be la-
beled as the comparative studies [5,7,9,10,15,21,23,24,33]. They deal with the compar-
ison of the two approaches with an objective to produce a more generalized data anal-
ysis framework. The second group concerns the applications of the notions and ideas
of formal concept analysis into rough set analysis [5,23,34]. Reversely, the third group
focuses on applying concepts and methods of rough set analysis into formal concept
analysis [4,8,11,16,17,20,23,34,39]. Those studies lead to different types of abstract
operators, concept lattices and approximations.
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Comparative Studies
Kent examined the correspondence between similar notions used in both theories, and
argued that they are in fact parallel to each other in terms of basic notions, issues and
methodologies [9]. A framework of rough concept analysis was introduced as a synthe-
sis of the two theories. Based on this framework, Ho developed a method of acquiring
rough concepts [7], and Wu, Liu and Li proposed an approach for computing accuracies
of rough concepts and studied the relationships between the indiscernibility relations
and accuracies of rough concepts [27].

The notion of a formal context has been used in many studies under different names.
Shafer used a compatibility relation to interpret the theory of evidence [18,19]. A com-
patibility relation is a binary relation between two universes, which is in fact a formal
context. Wong, Wang and Yao investigated approximation operators over two universes
with respect to a compatibility relation [25,26]. Düntsch and Gediga referred to those
operators as modal-style operators and studied a class of such operators in data analy-
sis [5]. The derivation operator in formal concept analysis is a sufficiency operator, and
the rough set approximation operators are the necessity and possibility operators used in
modal logics. By focusing on modal-style operators, we have a unified operator-oriented
framework for the study of the two theories.

Pagliani used a Heyting algebra structure to connect concept lattices and approxi-
mation spaces together [10]. Based on the algebra structure, concept lattices and ap-
proximation spaces can be transformed into each other. Wasilewski demonstrated that
formal contexts and general approximation spaces can be mutually represented [21].
Consequently, rough set analysis and formal concept analysis can be viewed as two re-
lated and complementary approaches for data analysis. It is shown that the extension
of a formal concept is a definable set in the approximation space. Qi et al. argued that
two theories have much in common in terms of the goals and methodologies [15]. They
emphasized the basic connection and transformation between a concept lattice and a
partition.

Wolski investigated Galois connections in formal concept analysis and their relations
to rough set analysis [23]. A logic, called S4.t, is proposed as a good tool for approxi-
mate reasoning to reflect the formal connections between formal concept analysis and
rough set analysis [24].

Yao compared the two theories based on the notions of definability, and showed that
they deal with two different types of definability [33]. Rough set analysis studies con-
cepts that are defined by disjunctions of properties. Formal concept analysis considers
concepts that are definable by conjunctions of properties.

Based on those comparative studies, one can easily adopt ideas from one theory to
another. The applications of rough set always lead to approximations and reductions in
formal concept analysis. The approximations of formal concept analysis result in new
types of concepts and concept lattices.

Approximations and Reductions in Concept Lattices
Many studies considered rough set approximations in formal concept lattice
[4,8,11,16,17,20,23]. They will be discussed in Section 5.2. The present study is in
fact a continuation in the same direction.
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Zhang, Wei and Qi examined property (object) reduction in concept lattice using
the ideas from rough set analysis [39]. The minimal sets of properties (objects) are
determined based on criterions that the reduced lattice and the original lattice show
certain common features or structures. For example, two lattices are isomorphic.

Concept Lattices in Rough Sets
Based on approximation operators, one can construct additional concept lattices. Those
lattices, their properties, and connections to the original concept lattice are studied ex-
tensively by Düntsch and Gediga [5], and Wolski [23]. The results provide more insights
into data analysis using modal-style operators.

Yao examined semantic interpretations of various concept lattices [34]. One can ob-
tain different types of inference rules regarding objects and properties. To reflect their
physical meanings, the notions of object-oriented and property-oriented concept lattices
are introduced.

5.2 Approximations in Formal Concept Lattice

Saquer and Deogun suggested that all concepts in a concept lattice can be considered
as definable, and a set of objects can be approximated by concepts whose extensions
approximate the set of objects [16,17]. A set of properties can be similarly approximated
by using intensions of formal concepts.

For a given set of objects, it may be approximated by extensions of formal concepts
in two steps. The classical rough set approximations for a given set of objects are first
computed. Since the lower and upper approximations of the set are not necessarily the
extensions of formal concepts, they are then approximated again by using derivation
operators of formal concept analysis.

At the first step, for a set of objects A ⊆ U , the standard lower approximation
apr(A) and upper approximation apr(A) are obtained. At the second step, the lower
approximation of the set of objects A is defined by the extension of the formal concept
(apr(A)∗∗, apr(A)∗). The upper approximation of the set of objects A is defined by
the extension of the formal concept (apr(A)∗∗, apr(A)∗). That is,

eapr(A) = apr(A)∗∗,
eapr(A) = apr(A)∗∗.

If apr(A) = apr(A), we have apr(A)∗∗ = apr(A)∗∗. Namely, for a definable set A,
its lower and upper formal concept approximations are the same. However, the reverse
implication is not true. A set of objects that has the same lower and upper approxima-
tions may not necessarily be a definable set. This shortcoming of their definition is the
same as the lattice-theoretic formulations of approximations.

Hu et al. suggested an alternative formulation [8]. Instead of defining an equivalence
relation, they defined a partial order on the universe of objects. For an object, its princi-
pal filter, which is the set of objects “greater than or equal to” the object and is called the
partial class by Hu et al., is the extension of a formal concept. The family of all principal
filters is the set of join-irreducible elements of the concept lattice. Similarly, a partial
order relation can be defined on the set of properties. The family of meet-irreducible el-
ements of the concept lattice can be constructed. The lower and upper approximations
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can be defined based on the families of meet- and join-irreducible elements in concept
lattice. Their definitions are similar to our lattice-theoretic definitions. However, their
definition of lower approximation has the same shortcoming of Saquer and Deogun’s
definition [16].

Some researchers used two different systems of concepts to approximate a set of
objects or a set of properties [4,11,14,20,23]. In addition to the derivation operator, one
can define the two rough set approximation operators [5,23,25,26,34].

A� = {y ∈ V | Ry ⊆ A},
A� = {y ∈ V | Ry ∩A �= ∅},

and

B� = {x ∈ U | xR ⊆ B},
B� = {x ∈ U | xR ∩B �= ∅}.

Düntsch and Gediga referred to ∗, � and � as modal-style operators, called sufficiency
operator, necessity operator and possibility operator, respectively [4,5].

The two operators can be used to define two different types of concepts and concept
lattices [5,34]. A pair (A,B) is called an object-oriented concept if A = B� and B =
A�. The family of all object-oriented concepts forms a complete lattice, denoted as
Lo(U, V,R). A pair (A,B) is called a property-oriented concept if A = B� and B =
A�. The family of all property-oriented concepts also forms a complete lattice, denoted
as Lp(U, V,R). Similar to the formal concept lattice, the set of objects A is referred to
as the extension of the concept, and the set of propertiesB is referred to as the intension
of the concept. With respect to those new concept lattices, one can apply the formulation
of approximations discussed previously in a similar way. For example, we may study
the approximations of a set of objects by using an object-oriented concept lattice.

Another class of approximation operators can be derived by the combination of op-
erators � and �. The combined operators �� and �� have following important proper-
ties [4]:

1). �� is a closure operator on U and V,

2). �� and �� are dual to each other,
3). �� is an interior operator on U and V.

Based on those properties, approximation operators can be defined [4,11,20,23]. The
lower and upper approximations of a set of objects and a set of properties can be defined,
respectively, based on two systems:

rapr(A) = A��, rapr(B) = B��,

and

rapr(A) = A��, rapr(B) = B��.

The operators �� and �� and the corresponding rough set approximations have been
used and studied by many authors, for example, Düntsch and Gediga [4], Pagliani [10],
Pagliani and Chakraborty [11], Pei and Xu [14], Shao and Zhang [20], and Wolski [23,24].
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If a set of objects A equals to its lower approximation rapr(A), we say that A is a
definable set of objects in the system Lo(U, V,R). If the set of objects A equals to its
upper approximation rapr(A), we say that A is a definable set of objects in the system
Lp(U, V,R). The lower and upper approximations of a set of objects are equal if and
only if the set of objects is a definable set in both systems Lo(U, V,R) and Lp(U, V,R).
Similarly, the lower and upper approximations of a set of properties are equal if and only
if the set of properties is a definable set in both systems Lo(U, V,R) and Lp(U, V,R).

6 Conclusion

An important issue of rough set analysis is the approximations of undefinable sets using
definable sets. In the classical rough set theory, the family of definable sets is a subsys-
tem of the power set of a universe. There are many approaches to construct subsystems
of definable sets [30,36]. Formal concept analysis provides an approach for the con-
struction of a family of definable sets. It represents a different type of definability. The
notion of approximations can be introduced naturally into formal concept analysis.

Formal concepts in a formal concept lattice correspond to definable sets. Two types
of approximation operators are investigated. One is based on the lattice-theoretic for-
mulation and the other is based on the set-theoretic formulation. Their properties are
studied in comparison with the properties of classical rough set approximation opera-
tors. A distinguishing feature of the lower approximation defined by set-theoretic for-
mulation is that a subset of the universe is approximated from below by a family of
definable sets, instead of a unique set in the classical rough set theory.

The theory of rough sets and formal concept analysis capture different aspects of
data. They can represent different types of knowledge embedded in data sets. The intro-
duction of the notion of approximations into formal concept analysis combines the two
theories. It describes a particular characteristic of data, improves our understanding of
data, and produces new tools for data analysis.

The sufficiency operators ∗ is an example of modal-style operators [4,5,33]. One can
study the notion of rough set approximations in a general framework in which various
modal-style operators are defined [4,5,10,33].
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Abstract. Motion information is the basic element for analyzing video.
It represents the change of video on the time-axis and plays an important
role in describing the video content. In this paper, a robust motion-based,
video retrieval system is proposed. At first, shot boundary detection is
achieved by analyzing luminance information, and motion information
of video is abstracted and analyzed. Then rough set theory is introduced
to classify the shots into two classes, global motions and local motions.
Finally, shots of these two types are respectively retrieved according to
the motion types of submitted shots. Experiments show that it’s effective
to distinguish shots with global motions from those with local motions
in various types of video, and in this situation motion-information-based
video retrieval are more accurate.

Keywords: Global motion, local motion, shot boundary detection, video
retrieval, rough sets.

1 Introduction

With the development of network, computer and multimedia technologies, the
demands for video are becoming greater and greater. There is widespread in-
terest in finding a quick way to obtain interesting video materials. Obviously,
traditional retrieval based on text cannot meet these demands, so content-based
video retrieval has been proposed as a solution. This technology uses objects
such as video features, to retrieve video. This approach contrasts with identifiers
that are used in traditional text-based retrieval. Video features such as colors,
textures, motion types can be extracted from video for retrieval. Among these
features, motion information of objects and backgrounds, as the unique feature
of video, is essential in the study of video retrieval. So, motion-information-based
video retrieval has had broad attention.

Video motions can be divided into two types, global and local. The global
motions are caused by camera movements, and there are six motion types de-
fined in MPEG-7 [14], including panning, titling, zooming, tracking, booming,
and dollying. The local motions refers to object motions in the scene, which
can be considered as parts not matching the global motion model. Referring
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to MPEG-7, a motion descriptor, called the parameter motion, can be used to
describe local motions. It mainly depicts changes with the times of arbitrary ob-
ject regions in video via 2-D geometry transition. In the study of global motions,
several parameter estimation methods for global motions in the uncompressed
domain have been proposed in recent years [4] [5] [29]. Tan and Saur proposed a
quick parametric global motion estimate algorithm, in which motion vectors of
macroblocks are extracted from compressed data [22]. A video retrieval system
based on global motion information was founded by Tianli Yu [30]. On the other
hand, in the study of local motions, there are three primary methods, which are
computing motion information after video segmentation [33], segmenting video
after computing motion information [1], and processing both of them at the same
time [23].

Algorithms and systems mentioned above can be used to obtain good ex-
perimental results in certain video application domains. However, if video with
complicated motions are applied, or motion types of shots are not the type
that the systems deal with, or there are coding errors, they are unreliable. So
shots need to be classified before motion analysis. Nevertheless, the classifica-
tion may bring uncertainty and inconsistency. For example, there are almost
similar motion features between frames of two motion types. Therefore, the the-
ory of rough set [19] may be useful in this research. Z. Pawlak proposed rough
set theory during the early 1980s as a powerful mathematical analysis tool to
process incomplete data and inaccurate knowledge (see, e.g., [16,17,18]). It’s a
new hot spot in the artificial intelligence field at present and has been widely
used in knowledge acquisition, knowledge analysis, decision analysis and so on
[24]. Instead of obtaining mathematical descriptions of attributes and features
of detected objects in advance, rough set methods make knowledge reduction
possible and reduce the number of decision rules. Since uncertainty and incon-
sistency accompany classification of global and non-global motions, the rough
set method is adopted to construct a better global motion model.

In this paper, a robust motion-based video retrieval system is proposed and
realized to retrieve similar shots from a video database. We propose a global-
motion analysis method in which feature attributions of motion information in
video are computed and, then, motion types of P frames are achieved via rough-
set-based video pre-classification. Furthermore, we present a method to check
motion types of shots based on P frame classification.

The rest of paper is organized as follows. At first, basic theories of rough
set and MPEG standard are introduced in Section 2. An extraction method of
motion information from P frames is proposed and video pre-classification is
performed using rough set method in Section 3. In Section 4, the method using
video luminance information to detect shot boundary is given. In Section 5, shot
classification based on the classification of P frames is proposed. In Section 6,
we present a global-motion-information retrieval scheme by computing distances
between shots. Next, in Section 7, experimental results using methods from
Section 3 to Section 6 to enhance the performance of the motion based video
retrieval are given. In Section 8, we give an overview of the diagram of the
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motion-based video retrieval and show a prototype system for video retrieval.
Finally, Section 9 concludes the paper.

2 Some Basic Concepts of Rough Set and MPEG

In this section, some of the basic concepts in rough set theory and standards for
dynamic image compression, are briefly considered.

2.1 Introduction of Rough Set

The expression of knowledge in rough set theory is generally expressed in terms
of a so-called information system, which is a 4-tuple [18]:

IS = (U,A, V, f). (1)

U is a finite set of objects (universe). A is a finite set of attributes, that is
A = {a1, a2, . . . , an} or A = C

⋃
D, where C denotes the condition attributes,

and D denotes the decision attributes. Va is the domain of the attribute a. For
each a ∈ A, an information function is defined as fa : U → Va. This information
system can be also described by using a two-dimensional decision information
table, in which each row denotes one example of U , each column denotes one
attribute of A, and each element denotes the value of the information function
fa.

The pretreatment in rough sets includes two steps, namely, data filling, and
data discretization. It is common that the information table is not fully filled.
Some values are missed and there is no way to obtain them, which is the main
cause of uncertainty in the information system. There are many methods to deal
with the missing data. One way is to simply remove the samples with missing
attribute values. In the second methods, attributes with missing data can be
considered as special ones and be processed in special ways. Another way is to
fill the missing data [6], which can be done by indiscernibility relation of rough
set, or by analyzing distribution information of other samples in the information
table according to the statistics principle.

Because elements studied in rough set are all discrete values, data from original
information need to be discretized [25]. As said above, A is made up of C and
D. r(d) is defined as the count of decision attributes. One broken point in Va

is defined as (a, c), where a ∈ R, c is the real number set. Any broken set
{(a, c1a), (a, c2a), . . . , (a, cka

a)} in Va = [la, ra] defines one classification Pa.

Pa = {[c0a, c1
a), [c1a, c1

a), . . . , [cka

a, cka+1
a]}. (2)

la = c0
a < c1

a < c2
a < . . . < cka

a < cka+1
a = ra. (3)

Va = [c0a, c1
a)
⋃

[c1a, c2
a)
⋃

. . .
⋃

[cka

a, cka+1
a]. (4)

So, P =
⋃

a∈R Pa defines a new decision table ISp = (U,A, V p, fp), fp(xa) =
i ⇔ f(xa) ∈ [ci

a, ci + 1a), x ∈ U, i ∈ {0, . . . ,Ka}. It means that original infor-
mation system is replaced by a new one after discretization.
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It’s known that a sample in the decision table denotes a decision rule, and
all these samples that are useless for their inadaptability form a decision rule
set . In order to abstract rules with high adaptability, the decision table needs
to be reduced. In the rough-set-based knowledge acquisition, decision rules are
achieved via reduction of the decision table, including reduction of attributes
and reduction of values.

Reduction of attributes is to remove some condition attributes not important
to decision attributes, so the remaining condition attributes can be used for
decision making [7]. However, reduction of attributes is still not able to remove
all of the redundant information from the decision table. So reduction of values
is used for further reduction. We define decision rules dx as follows:

dx : des([x]C) ⇒ des([x]D), dx(a) = a(x), a ∈ C ∪D, (5)

where des([x]C), des([x]D) are separately defined as the condition and decision
of dx.

For dx, [x]C ⊆ [x]D, if ∀r ∈ C and [x]C\{r} ⊆ [x]D, r is not the core attribute
set of dx and it can be ignored; or else r is the core attribute set.

2.2 MPEG Standards

MPEG (Moving Picture Experts Group) [12] is an expert group established by
the International Standards Organization (ISO) to develop dynamic image com-
pression standards. There are five standards proposed by this group, including
MPEG-1, MPEG-2, MPEG-4, MPEG-7, and MPEG-21, which span all aspects
of compressing, authoring, identifying, and delivering multimedia. MPEG-1 and
MPEG-2 standards deal with interactive video on CD-ROM and Digital Tele-
vision. MPEG-4, proposed in 1999, provides the standardized technological ele-
ments enabling the integration of the production, distribution and content access
paradigms of the fields of digital television, interactive graphics and interactive
multimedia. MPEG-7, officially called the Multimedia Content Description In-
terface, is a set of rules and tools for describing content. MPEG-21 seeks to
let content distributors have complete control over content at all parts of the
delivery chain and on all kinds of networks and devices.

Many storage media are organized with MPEG-2 format [13]. Two coding
techniques, prediction and interpolation, are adopted in the MPEG-2 video com-
pression algorithm in order to satisfy high compression ratio and random ac-
cess. There are three specific types of frames in MPEG-2, I frames (intra-coded
frames), P frames (predictively coded frames) and B frames (bidirectionally pre-
dictively coded frames). I frames don’t need reference frames when coded and
their compression ratio is the lowest. I frames are random access points and ref-
erence frames for other types of frames. P frames are predicted by use of only
one previous I or P frames. Meanwhile they are reference frames for subsequent
frames. Because P frames utilize the temporal redundancy of video, their com-
pression ratio is high. B frames are predicted referring to at most two frames(I
or P frames) and can’t be used as reference frames. Their compression ratio is
the highest because of their bidirectional prediction with motion compensation.
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Fig. 1. Data Hierarchy of MPEG Video

In the MPEG-2 standard, there is a data structure called GOP (group of
pictures), which is shown in Fig. 1. The count of frames in GOP is a constant,
and the first frame in GOP must be the I frame. A frame consists of certain slices,
which are composed of arbitrary numbers of macroblocks. Macroblocks appear
in raster scanning order in the video stream. A macroblock, consisting luminance
block or chroma block, is the unit of prediction with motion compensation. The
block is the unit of DCT (discrete cosine transform). Frames are predicted with
motion compensation by use of the previous decoded frames (I or P frames),
then they are reconstructed via combining the prediction with the coefficient
data from the IDCT (inverse discrete cosine transform) outputs.

MPEG-7, formally named “Multimedia Content Description Interface”, aims
to create a standard for describing the multimedia content data that will support
some degree of interpretation of the informations meaning, which can be passed
onto, or accessed by, a device or a computer code. MPEG-7 is not aimed at any
one application in particular; rather, the elements that MPEG-7 standardizes
shall support as broad a range of applications as possible. MPEG-7 is the core
part of the video retrieval system. The forepart of MPEG-7 is the analysis results
of multimedia data, while the rear-end of MPEG-7 is the basis of extraction of
multimedia data. MPEG-7 visual description tools consist of basic structures
and descriptors that cover following basic visual features: color, texture, shape,
motion, localization, others. Among them, motion descriptions are relative with
the work in the paper.

3 Rough-Set-Based Video Pre-classification Modeling

A rough set approach to video pre-classification is considered in this section.

3.1 Modeling of Video Pre-classification System

As said above, there are three types of frames. Motion information is contained
in P frames and B frames. Since the information in adjacent B frames are nearly
the same, only P frames in the GOP is analyzed in the motion-information-based
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video retrieval system. In this paper, video are pre-classified just by analyzing
information of P frames in the compressed domain.

The video pre-classification system is shown in Fig. 2. At first, motion infor-
mation of P frames is extracted from MPEG-2 video database. Then abnormal
data in P frames are removed in order to make the results more exact. The re-
maining data are used to extract feature attributes via the algorithm proposed
in the paper. After analyzing values of all feature attributes by the rough set
classifier, decision rules are obtained finally.

In order to complete an information table referring to Section 2, we need to
extract the data set U and determine an attribute set A.

Decision rule 

Extracting motion 

information of P frames
MPEG2 video database 

Removing abnormal 

data 

Extracting feature 

attribute 
Rough set classifier 

Fig. 2. Rough Set Based Video Pre-classification

For universality of samples, various test sequences are chosen, including car-
toon clips, advertisement clips, and news clips. Then, after extracting many P
frames, motion types of these P frames are added by hand to form information
data U . There are 1367 frames in our experiments.

3.2 Determination of Attributes

Extracting Motion Information. In our information system, the analyzed
data are extracted from the compressed domain of P frames. They include mac-
roblock types and motion vectors.

The macroblock type is denoted as the field macroblock type in the MPEG
stream. This field is only used in video coding, but hardly in video retrieval.
To exploit temporal redundancy, MPEG adopts macroblock-level motion esti-
mation. During motion estimation, the encoder first searches for the best match
of a macroblock in its neighborhood in the reference frame. If the prediction
macroblock and the reference macroblock are not in the same positions of the
frames, motion compensation is applied before coding.

Given that No MC means no motion compensation, when a macroblock has no
motion compensation, it is referred as a No MC macroblock. Generally, there are
two kinds of No MC, which are intra-coded No MC and inter-coded No MC. In
typical MPEG encoder architecture, there exists an inter/intra classifier. The in-
ter/intra classifier compares the prediction error with the input picture elements.
If the mean squared error of the prediction exceeds the mean squared value of the
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input picture, the macroblock is then intra-coded; otherwise, it is inter-coded. In
fact, in a special case, when the macroblock perfectly matches its reference, it is
skipped and not coded at all. So macroblocks can be classified as five types shown
in the first column in Table 1. Furthermore, some types can be combined, and
finally we specify three types of motions, which are motions with low change(L),
motions with middle change (M) and motions with high change (H).

Table 1. Macroblock Types

Five macroblocks Our type X

skipped macroblock L

intra-coded macroblock H

motion compensated and coded macroblock M

motion compensated and not coded macroblock M

not motion compensated and coded macroblock L

Via the field macroblock type, the ratios of macroblock types are defined as
follows:

RateH = Hcount/T count, (6)

RateM = Mcount/T count, (7)

RateL = Lcount/T count, (8)

where Tcount is the whole count of the macroblock in a P frame, and the other
Xcount is the count of the macroblock which type is X, as given in Table 1.

Removing Abnormal Data. In order to accurately analyze motion vectors,
global and local abnormal data need to be removed at first. The algorithm of
removing abnormal data is shown in Fig. 3.

Assumed that all motion vectors of a P frame are based on Gaussian distri-
butions, one motion model will be directly built up. Motion vectors here are

Set of motion vectors Result set of motion vectors 

Removing global abnormal data 

Removing local abnormal data 

Combining motion vectors Modeling 

Clustering and removing 

abnormal models 

Fig. 3. Removing Abnormal Data
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extracted via block matching algorithm. There are many rules to match blocks.
One is to compute the minimum value of mean square deviation between the
searched block and the current block. Another is to find the minimum value
of mean absolute deviation between them. The search methods of the block
matching algorithm include full search and logarithm search. Although the block
matching algorithm tries to find the best matches, in low texture areas of frames
there are random errors that are called abnormal data. For example, in Fig. 4,
it denotes the zoom movement of the camera, from which one can clearly find
some global abnormal data that don’t conform to the whole.

Fig. 4. Global Abnormal Data

The coordinate system for a P frame is shown in Fig. 5, in which the orig-
inal point is in the center and the rectangle denotes a 16*16 macroblock with
coordinate (i, j). The line emitting from the rectangle center denotes the motion
vector of the macroblock. We define:

Eij =
√

v2
ijx + v2

ijy , (9)

θij = angle, (10)

where vijx is the horizontal motion vector of macroblock (i, j) and vijy is the
vertical, Eij is its movement energy and θij is its movement direction.

The energy of the macroblock can be characterized by several levels. According
to the human visual system, here it is non-uniformly quantified as five degrees:
0 ∼ 8, 8 ∼ 16, 16 ∼ 32, 32 ∼ 64, ≥ 64. Then we define:

ratio[i] = count[i]/sum, (11)

where sum denotes the sum of macroblocks with motion vectors, and count[i],
ratio[i] respectively denote the count and ratio of macroblocks in level i. After a
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Fig. 5. Movement energy and direction of the macroblock

lot of experiments, a proper threshold 7% is set here, which means that if ratio[i]
is smaller than the threshold, all motion vectors in the qualified level i are set
to zero.

For global motions, the movement trend of neighbor macroblocks is always
changed gradually. So are the local motions sometimes, but it becomes the fastest
in the regions where different objects with different motions are tangent. As a
result, we use 3*3 detection matrices to trim local abnormal data. The center of
matrices as a reference point is compared with other eight macroblocks by the
energy and direction. Then sudden changed ones are removed during processing.
After this step, the following is defined:

RateM1 = Mcount1/T count, (12)

where Mcount1 is the count of macroblocks having motion vectors after deleting
abnormal data, not as the definition in Formula 7.

Abstracting Movement Models. The motion vectors inconsistent with
global or local optical feeling have been removed after the above steps. The
remaining motion vectors are able to accurately express the movement they be-
long to. In the following step we need to abstract all of the main movement
models to express the motion features of video.

Sequentially, macroblocks are combined by checking whether they are neigh-
boring. The region Sk is defined as:

Sk = {(i, j)|(i, j) are neighboring and Eij �= 0}. (13)

As shown in Fig. 6, the motion vectors of P frames are divided into five regions,
which are not adjacent to each other. Every region has an unique motion model,
so the motion model of each region can be built up at first.

There are two ways to build up the motion mode: non-image method and
image method. The non-image method is used to build up models by directly
extracting operation parameters of cameras during the shoot process, but it
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Fig. 6. Combination of motion vectors

needs extra equipments. The image method is used to build up motion-vector-
based parameter models. For the parameter model, six parameters and eight
parameters models are usually adopted. A six-parameter affine model can be
applied for general applications. Since the motion model of each region is unique,
we adopt a six-parameter affine model to describe the movement of each region.
The optimal motion parameters as follows are calculated by using the least
square method:

u = a0x + b0y + z0, (14)

v = a1x + b1y + z1. (15)

x is the horizontal coordinate of macroblocks. y is the vertical coordinate of
macroblocks. u is the horizontal motion vector. v is the vertical motion vector.
a0, b0, z0, a1, b1, z1 are six motion parameters describing models where a0, b0,
a1, b1 describe the depth of motion scenes and z0, z1 describe 2-D global or
local motions [21]. Therefore, regions with the similar motion models can be
combined further by taking six parameters above into consideration. The count
of final motion models is defined as ModuleNum.

The six-parameter affine model is used to express the movement of each region.
For each region Sk, the deviation function is defined as:

E(k) =
∑

(x,y)∈Sk

[(u − a0x− b0y − c0z)2 + (v − a1x− b1y − c1z)2]. (16)

The optimized motion parameters of Sk make E(k) in Formula 16 the mini-
mum value.

Since the abnormal data having interference on least square method have been
trimmed, the optimized motion parameters of combined regions can be obtained
via the least square method.
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Because the movements in video are very complex, there may be various mo-
tion models at the same time. Considering the video of a basketball match, there
are scenes of players’ grabbing, acclaim of the surroundings audience, and the
global motion that a camera tracks the player’s shooting. According to the hu-
man optical feature, we assume that at any time people usually focus their eyes
on the dominant motions , which are just required in the motion-based video
retrieval. For example, when the camera tracks a running player, the track of
camera is the primary motion, because it indirectly reflects the running infor-
mation of the player. Some information, such as the change of audiences on the
background, can be ignored.

The algorithm of clustering models is to trim minor motion information and
apply the remains of motion models for the content-based video retrieval and
classification.

At first the rules are defined to check whether two motion models are similar.
If two motion models show significant 3-D movements via analyzing a0, b0, a1,
b1, they are judged to be similar. Otherwise, the ranges and directions of 2-D
movements are compared via analyzing z0, z1; if their difference is higher than
the threshold set in the system, they can’t be processed as one model.

After definition of rules, each region is compared with the biggest combined
region. If the two regions have inconsistent motion models and the biggest com-
bined region is twice bigger than current region, current region should be deleted,
or else its motion model will be reserved.

At last, regions with the similar motion models can be clustered further, and
the count of final motion models is defined as ModuleNum.

Extracting Other Motion Features. A motion activity description is rec-
ommended in MPEG-7, in which spatial distributions of motion activity include
motion density, motion rhythm and so on. It can also be indirectly scaled with
intensity of motion vectors in the MPEG stream as follows [3]:

Cmv,avg =
1
IJ

I/2∑
i=−I/2

J/2∑
j=−J/2

Eij , (17)

where I is the width of a P frame in unit of a macroblock, and J is the height of
it.

Referring to the literature [11], the motion centroid Com and motion radii
Rog are calculated as follows:

mpq =
I/2∑

i=−I/2

J/2∑
j=−J/2

ipjqf(i, j), where f(i, j) =
{

0 if Eij = 0,
1 if Eij �= 0. (18)

Comx =
m10

m00
, Comy =

m01

m00
, Com =

√
Com2

x + Com2
y. (19)

Rogx =
√

m20

m00
, Rogy =

√
m02

m00
, Rog =

√
Rog2

x + Rog2
y. (20)
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Selection of Feature Attributes. Next, feature attributes of the information
system need to be chosen. Due to correlations among RateH , RateM and RateL
which are defined in Formula (6)(7)(8), only RateH and RateL are selected to
describe ratios of different types of macroblocks together with RateM1 given in
Formula (12). ModuleNum given in Section 3.2 is used to denote the count of
main motions in a frame. The four attributes above are computed by analyzing
not only motion vectors but also the field macroblock type in the MPEG steam.
The field macroblock type is hardly referred in literatures, but it is crucial for
us to distinguish global motion frames from non-global motion frames in our
experiments. So RateH , RateM , RateL and ModuleNum are defined for the
first time. Referred to [3] and [11], Cmv, avg, Com, Rog are also selected.

Above all, seven feature attributes are defined in order to construct the video
pre-classification condition attribute set C.

C = {RateH,RateM1, RateL,ModuleNum,Cmv, avg, Com,Rog}. (21)

The seven attributes can show differences between global motion model and non-
global motion model, such as ratios of different motions, the count of motions
and movement characteristics. As a result, those attributes are quite enough for
video classification. The decision attribute of the decision table is described that
global motion type is 1 and non-global motion type is 2. Table 2 shows a example
of decision table.

Table 2. Example of Decision Table in Video Pre-classification System

Condition attributes Decision attribute

RateH RateM1 RateL ModuleNum Cmv,avg Com Rog Type

0.167 0.121 0.712 1 3.320 0.279 3.732 2

0.179 0.129 0.692 3 1.909 0.192 2.067 2

0.475 0.25 0.275 2 4.427 0.136 2.269 1

0.636 0.053 0.311 1 2.867 0.61 5.734 2

0.863 0.0542 0.083 1 0.338 0.121 0.937 1

0.106 0.053 0.819 1 0.211 0.531 1.131 2

0.159 0.25 0.591 1 0.962 0.102 0.452 1

0.004 0 0.996 0 0 0 0 2

0.285 0.135 0.579 2 0.989 0.020 1.122 2

3.3 Extraction of Decision Rules Based on Rough Set

Extraction of decision rules via the rough set theory includes several steps, which
are data preprocessing, reduction of attributes, reduction of values and obtaining
logic rules according to reduction of values.

Data Preprocessing. It includes deleting repeated records, filling missing
data and discretization. Discretization is the process by which a set of values
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is grouped together into a range symbol. In this paper some discretization meth-
ods are considered.

The discretization method, Equal Interval Width, divides the range of ob-
served values for an attribute into k equal sized intervals, where k > 0 is a user-
supplied parameter. If an attribute a is observed to have values bounded by amin

and amax, then this method computes the interval width width(k) = (amin −
amax)/k and constructs thresholds at amin + i ∗width(k), where i = 1, ..., k− 1.
The method is applied to each continuous attribute independently. Since this
unsupervised method does not utilize decision values in setting partition bound-
aries, it is likely that classification information will be lost by binning as a result
of combining values that are strongly associated with different classes into the
same interval. In some cases this could make effective classification much more
difficult.

Nguyen improved greedy algorithm is another way to discretize data. Nguyen
S. H gave some detailed description about discretization in rough set in refer-
ence [15]. He gave the complexity of discretization problem and proved that it is
an NP-hard problem. And at the same time he also proposed a basic heuristic
algorithm based on rough set and boolean reasoning, which brought great im-
provement in dealing with discretization problem in rough set. For convenience
of discretization, we call this algorithm basic heuristic algorithm.

In Naive Scaler algorithm [9], it implements a very straightforward and simple
heuristic method that may result in very many cuts, probably far more than are
desired. In the worst case, each observed value is assigned its own interval. In
some cases, however, a simplistic and naive scheme may suffice. For the sake of
simplifying the exposition, we will assume that all condition attributes A are
numerical. For each condition attribute a we can sort its value set Va to obtain
the following ordering:

v1
a < . . . < vi

a < . . . < v|va|
a . (22)

Let Ca denote the set of all naively generated cuts for attribute a, defined
as shown below. The set Ca simply consists of all cuts midway between two
observed attribute values, except for the cuts that are clearly not needed if we
do not bother to discern between objects with the same decision values.

X i
a = {x ∈ U | a(x) = vi

a}. (23)

,i
a = {v ∈ Vd | ∃x ∈ X i

a such that d(x) = v}. (24)

Ca = {(vi
a + vi+1

a )/2 | | ,i
a | > 1 or | ,i+1

a | > 1 or ,i
a �= ,i+1

a }. (25)

In essence, we place cuts midway between all va
i and va+1

i , except for in
the situation when all objects having these values also have equal generalized
decision values a that are singletons.

If no cuts are found for an attribute, the attribute is left unprocessed. Missing
values are ignored in the search for cuts.

Comparison experiments show that Nguyen improved greedy algorithm ach-
ieves the best result in our case. So this algorithm is adopted.
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Reduction of Attributes. The forward attributes selecting and the backward
attributes deletion are two types of attributes reduction.

Algorithms of attributes reduction via forward attributes selecting usually
start from the core of the condition attributes. They gradually extend the at-
tribute set according to importance of each attribute. Different algorithms of
attributes reduction have different definitions of attribute importance. Typical
algorithms include that based on the condition information entropy and that
based on the discernibility matrix.

The reduction algorithm based on the condition information entropy are
proposed in [26]. It analyzes the information view of rough set theory and
compares it with the algebra view of rough set theory. Some equivalence re-
lations and other kinds of relations like the inclusion relation between the in-
formation view and the algebra view of rough set theory are resulted through
comparing each other. Based on the above conclusion, [26] proposes a novel
heuristic knowledge reduction algorithm based on the conditional information
entropy.

The algorithm based on the discernibility matrix is another method to reduce
attributes. In the algorithm, if one attribute is more frequent in the discernibility
matrix, its classification ability is stronger. The definition of discernibility matrix
is given in [7].

Unlike the forward attributes selecting algorithms, the backward attributes
deletion algorithms start from the whole condition attributes. They gradually
delete some attribute according to importance of each attribute until certain con-
ditions are satisfied. Unfortunately, the backward attributes deletion is studied
less.

Here the reduction algorithm based on condition information entropy [26] is
adopted.

Reduction of Values. There are many algorithms to reduce values, such as the
inductive reduction algorithm, the heuristic reduction algorithm, the reduction
algorithm based on decision matrices and so on.

The reduction algorithm based on decision matrices [20] is adopted in the
paper. It uses a variable precision rough set model. If P and Q are equivalence
classes in U , the positive region of Q to P POSP (Q) is defined as:

POSP (Q) =
⋃

X∈U/Q

P (X). (26)

For an information table RED after reduction of attributes, let X+
i (i=1,2,. . .,γ),

X−
j (j = 1, 2, . . . , ρ) denote the equivalence classes of the relation R∗(RED),

X+
i ⊆ POSβ

RED(Y ), X−
j ⊆ NEGβ

RED(Y ), the decision matrix M = (Mij)γ∗β is
defined as:

Mij = {(a, f(X+
i , a)) : a ∈ RED, f(X+

i , a) �= f(X−
j , a)}. (27)
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Mij contains all attribute pairs with different values in the equivalence classes
X+

i and X−
j . Given an equivalence class X+

i , if each element of Mij is taken as
a boolean expression, the decision rule set can be expressed as follows:

Bi =
∧
j

(
∨

Mij). (28)

It’s seen that basic implication of Bi is actually the maximal generalized rule
of the equivalence class X+

i , which belongs to the positive region POSβ
RED(Y ).

As a result, by finding out all basic implication of the decision function Bi(i =
1, 2, . . . , γ), all maximal generalized rules of the positive region POSβ

RED(Y ) are
computed.

Obtaining Logic Rules According to Reduction of Values. Combined
with logic meanings of attributes, the rules derived from reduction of attributes
are analyzed to form logic rules, which are validated later taking coding features
of P frames into account.

4 Detection of Shot Boundary

As mentioned above, the macroblock includes luminance blocks and chroma
blocks. The human visual system are more sensitive to luminance information
than chroma information, so chroma blocks need not to be analyzed. The lumi-
nance information of original data is transformed to DCT coefficients via DCT
and saved in a certain number of 8*8 blocks. The 64 DCT coefficients in a block
are frequency coefficients. The first coefficient among them is called DC (di-
rect coefficient), and the other 63 ones are called AC (alternating coefficients).
Because the change between two close picture elements is gradual, most informa-
tion is in the low frequency region, so the first coefficient DC contains the most
information in the block, which is only extracted in the video retrieval system.
In this way, it not only speeds up analysis of video, but also effectively expresses
video information.

A shot is defined as a number of images which are continuously recorded by the
same camera. Simply speaking, a shot is a set of successive frames. The abrupt
transition is the primary edit type between two successive shots. It directly con-
nects two shots with no film editing operation. In general, it represents abrupt
changes between two frames, such as the change of the scene luminance, motions
of object and background, the change of edges and so on. In the same scene, the
abrupt change of luminance mainly results from illumination change or move-
ments of scenery. Otherwise, it’s usually caused by switch of scenes. In fact, it
is difficult to know which reason mentioned above causes the luminance change.
Therefore the abrupt transition detection algorithm should be able to reduce the
influence of the luminance changes which are not caused by shot switches.

The boundary based method [31] is adopted, which is similar to the image
segment. It makes use of discontinuity between shots and contains two important
points: one is to detect each position to check whether any change happens, the
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other is to determine whether it is the real shot boundary according to the
characteristics of abrupt transition.

The most common algorithm of boundary based method is the sliding window
method [10]. The sliding window spans 2R+1 frames. The metric used as follows
is the sum of differences between successive frames:

D =
t=−R∑

R

|f(x, y, t)− f(x, y, t + 1)|. (29)

D is considered as a shot boundary if D is the maximum value and the second
largest maximum value is D2. D > kD2, where k is a positive coefficient.

f(x, y) in Formula (29) can be specified via DC values from compressed
domain.

The dual-sliding-window-based detection method improves the traditional
sliding window method. If traditional sliding window is applied, there are leak
detection and wrong detection due to motions of big objects. The improved
method can overcome these problems and performs great results. At first a big
window is defined to determine some possible frames where abrupt transitions
may happen. Then a small window is defined and the chosen frames in the first
step are set in the middle of the window. Next, in order to avoid leak detection
and wrong detection, single side detection is added in the algorithm.

The steps of this method are shown as follows:

Step 1: Define a big window whose size is WB . Calculate the mean difference
m in this window to detect the frames where abrupt transition may happen.
If the differences are certain times bigger than m, the relative frames can be
detected further to determine if it is the real position where abrupt transition
happens.

Step 2: Define a small window whose size is Ws = 2r − 1. The chosen frames
in the first step are set in the middle of the window.

Step 3: If the frames accord with conditions of double sides below (k1 and
k2 are predefined thresholds), it’s considered that the abrupt transition happens
on frame t. Then the algorithm returns to the Step (2) and continues to detect
frames starting from the frame t + r:

Dt ≥ k1m;
Dt ≥ Di, i = t− r + 1, t− r + 2, . . . , t− 1, t + 1, . . . , t + r − 2, t + r − 1;
Dt ≥ k2D2,whereD2 is the second maximum value of difference.
Step 4: Otherwise, if they accord with the following single side condition (k3

and k4 are predefined thresholds), it’s considered that the abrupt transition
happens on frame t:

Dt ≥ k3m;
Dt ≥ k4DlorDt ≥ k4Dr;

where Dt=max(Di), i = t − r + 1, t − r + 2, . . . , t − 1, Dr = max(Di), i =
t− r + 1, t− r + 2, . . . , t− 1, t + 1, . . . , t + r − 2, t+ r − 1.
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5 Shot Type Checking

It is not enough only to classify P frames based on motion information for video
retrieval. A shot, as the unit of video, needs to be classified further. Generally
speaking, shots can be classified as two types, global motions or local motions.
If global motion is dominant in a retrieval sample, only the shots with the type
of global motions in the video database need to be retrieved; otherwise only the
shots with the type of local motions need to be retrieved.

In lots of experiments, it is found that motion types of shot are able to be
checked by computing proportion of each type of P frames in a shot. Part of
experiment data is listed in Table 3. In Table 3, CP denotes the count of P
frames, CG denotes the count of P frames with global motions, CL denotes the
count of P frames with local motions and CU denotes the count of P frames
whose motion types can’t be determined.

We define:

GlobalRate = global motion count/ total P frames count. (30)

NonglobalRate = non-global motion count/ total P frames count. (31)

By observing data in Table 3, it’s seen that for the shots with many frames,
if global motions are dominant in them, its GlobalRate is bigger than a certain
value, or else NonglobalRate is bigger than another certain value. The two values
can be equal. It’s proper if the value is 0.60. Motion types of the shots with few
P frames can’t be determined sometimes, as exemplified by the shot with 4 P
frames in Table 3. Since their analysis means no sense, their processing can be
ignored.

Table 3. Count of P Frames with Different Types in Shots

Shot CP CG CL CU GlobalRate NonglobalRate Shot type

1 34 12 21 1 0.35 0.62 2

2 15 13 1 1 0.87 0.07 1

3 3 3 0 0 1 0 1

4 14 4 9 1 0.29 0.64 2

5 9 1 8 0 0.07 0.89 2

6 15 13 1 1 0.87 0.07 1

7 4 1 2 1 0.25 0.50 -

8 3 0 3 0 0 1 2

9 32 28 3 1 0.88 0.09 1

6 Motion-Information-Based Shot Retrieval Scheme

In the paper, the retrieval of shots with global motions is mainly discussed. As
mentioned in Sect 3.2, a six-parameter affine model is founded to trim abnormal
data. For the whole P frames with global motions, a motion model can be set
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up via the six-parameter affine model too. a0, b0, z0, a1, b1, z1 are obtained
referring to Formula (14) and (15).

As the retrieval granularity is an shot, the result is a set of shots sorted by
similarity with the submitted samples. So the distance between two shots needs
to be defined.

If two shots are described as V1, V2, whose global P frames are {m1(i)} and
{m2(j)}, their distance is defined as:

D(V1, V2) = min
i,j

d(m1(i),m2(j)), (32)

where d(m1,m2) denotes the distance between two P frames.
According to the literature [11], d(m1,m2) is be defined as follows:

d(m1,m2) =
∑
x,y

[um1(x, y) − um2(x, y)]2 + [vm1(x, y) − vm2(x, y)]2. (33)

Combined with formula (14) and (15), it can be defined as:

d(m1,m2) =
∑

y

∑
x

[(z10 − z20) + (a10 − a20)x + (b10 − b20)y]2 +

[(z11 − z21) + (a11 − a21)x + (b11 − b21)y]2. (34)

After reduction, the formula above becomes:

d(m1,m2) = [(a10 − a20)2 + (a11 − a21)2]
∑

x

x2
∑

y

1 +

[(b10 − b20)2 + (b11 − b21)2]
∑

x

1
∑

y

x2 +

[(z10 − z20)2 + (z11 − z21)2]
∑

x

1
∑

y

1 +

2[(a10 − a20)(b10 − b20) + (a11 − a21)(b11 − b21)]
∑

x

x
∑

y

y +

2[(b10 − b20)(z10 − z20) + (b11 − b21)(z11 − z21)]
∑

x

1
∑

y

y +

2[(a10 − a20)(z10 − z20) + (a11 − a21)(z11 − z21)]
∑

x

x
∑

y

1. (35)

Given the length(M) and width (N) of P frames, some values in the formula
above can be computed ∑

x

1 = M,
∑

y

1 = N. (36)

∑
x

x = M(M + 1)/2,
∑

y

y = N(N + 1)/2. (37)

∑
x

x2 = M(M + 1)(2M + 1)/6,
∑

y

y2 = N(N + 1)(2N + 1)/6. (38)
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The distance between two P frames d(m1,m2) can be calculated by combining
Formula (35)(36)(37)(38) with a0, b0, z0, a1, b1, z1. Finally the distance between
two shots is computed according to Formula (32), then the similarity between
them can be specified.

7 Experiments and Analysis of Results

7.1 Experiments of Removing Abnormal Data of P Frames

Firstly, several typical video frames are chosen to test the algorithm of deleting
abnormal data of the motion vectors, compared with the method proposed in
literature [11]. The chosen video frames [8], original pictures of motion vectors,
result pictures of motion vectors via the algorithm proposed in literature [11]
and the one adopted in the paper are shown in Fig. 7 in turn.

From the chosen video, there is the movement of a camera in the first P
frame. Due to simple motion type, there are only a few global abnormal data
in the original frame. From the picture, it’s seen that the camera movement is
obvious. Experiment results with the two algorithms are nearly the same. The
second P frame includes two movements, one man going upstairs by lift in the
left and another person going downstairs by lift in the top right corner. The
left movement that is more obvious than the right is deleted via the method
proposed in literature [11], while they are saved after the algorithm discussed in

P frames Original picture Result picture A Result Picture B 

   

    

    

Fig. 7. Pictures of Motion Vectors. Original picture denotes original pictures of motion
vectors; result picture A denotes result pictures of motion vectors via the algorithm
proposed in literature [11]; result picture B denotes result pictures of motion vectors
via the algorithm proposed in the paper.
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the paper instead. The third P frame contains camera zooming and one jumping
person. However, the same error occurs via the method proposed in literature
[11], while the result of the algorithm proposed in the paper is right.

It’s concluded that the method proposed in literature [11] is unreliable if there
are global motions and local motions, especially if objects with local motions are
large compared with the whole frame.

Taking universality of samples into consideration, various test sequences, in-
cluding cartoon clips, advertisement clips, news clips and physical clips, are
chosen. All the videos are coded with MPEG-2 and their frame sequences are
organized as IBBPBBPBBIBB. All P frames in these video are analyzed, and
motion information which depends on our vision is compared with remaining
motion vectors and motion models via the algorithm proposed in the paper. It’s
considered as the wrong recognition if they are too different. The result is shown
in Table 4.

From Table 4, it’s seen that the accuracy of the three video is high, so the al-
gorithm is robust if it is applied to the motion-information-based video retrieval.

Table 4. Recognition Accuracy of Motion Models

P frames Count Right recognition Accuracy (%)

Physical clip 41 39 95.1

Advertisement clip 102 96 94.1

News clip 129 119 92.2

7.2 Experiments of Video Pre-classification

As said above, many kinds of video clips, including cartoon clips, advertisement
clips and so on, are selected for our experiment. These video clips are available
at the website of Institute of Computer Science and Technology, at Chongqing
University of Posts and Telecommunication in China [8]. 1367 P frames extracted
from them are taken as the data set U , 440 of which are global motion frames
and the others are non-global. 400 samples are randomly selected from them
as training data, in which 146 are global. Then, in order to form the video
classification decision table used for rule producing, feature attributes of those
frames are extracted one by one according to attribute descriptions above. The
training data and test data can also be got in the website [8].

In our experiments, the RIDAS system is adopted as a data mining platform,
which is developed by Institute of Computer Science and Technology, Chongqing
University of Posts and Telecommunications in China [32]. The system integrates
almost 30 classical algorithms regarding rough set theory.

Since values of attributes are unique and can be computed, there’s nothing
missing in the information table and the filling of missing data is not needed.
Types of most data are float, so discretization for data is necessary. In the RIDAS
system, there are 12 algorithms in all for discretization. In our experiments, we
used all of the algorithms to discretize the training data. It’s found that if we use
any algorithm except the greedy algorithm described in Section 3.3, no matter
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Table 5. Values of Intervals of Attributes after Discretization

Attribute Count of interval Broken set

RateH 2 *, 0.223, *

RateM1 4 *, 0.082, 0.138, 0.170, *

RateL 4 *, 0.330, 0.499, 0.671, *

ModuleNum 2 *, 1.5, *

Cmv,avg 5 *, 0.136, 0.218, 0.529, 1.243, *

Com 4 *, 0.206, 0.241, 0.441, *

Rog 6 *, 0.661, 0.889, 1.096, 1.193, 2.452, *

which method is sequentially used for reduction of attributes and values, the
result is very poor. We further found that Nguyen improved greedy algorithm
outperforms other greedy algorithms, so it is adopted in our experiments. Via
Nguyen improved greedy algorithm, the broken set can be obtained as listed
in Table 5. From each broken set, intervals can be easily got. For example, the
broken set (*, 0.223, *) means that there are 2 intervals, including [*, 0.223] and
[0.223, *].

All condition attributes are reserved after reduction of attributes by using
all of the attributes reduction algorithms. It indicates that the attributes are
all partly necessary, which means the decision attributes educed by them are
accordant with that educed by all attributes.

After attribute reduction, value reduction of the training data needs to be
done and rule match strategies of the test data need to be chosen. 4 algorithms
of value reduction and 2 rule match strategies are used for our experiment, and
the result of comparison experiments is shown in Table 6.

Table 6. Accuracy Comparison of Each Strategies

Strategy Reduction algorithm
Heuristic red. Decision matrices red. Inductive red. General red.

Major Acc.(%) 77.6 79.2 78.3 81.7

Minor Acc.(%) 81.1 82.4 81.1 81.7

In Table 6, “Major Acc.” denotes accuracy via the majority priority strategy
for test data to match rules, while “Minor Acc.” denotes accuracy via the mi-
nority priority strategy [27] . It’s seen from Table 6 that when value reduction
based on decision matrixes and rule match the via minority priority strategy are
adopted in our experiments, the result is higher than other strategies, in which
the accuracy is 82.4%. So it’s adopted in our system.

After value reduction, totally 97 rules are obtained from the video pre-classifi-
cation information table. Some rules covering over 20 samples are listed as
follows.
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rule1: Cmv,avg(4)
⋃

ModuleNum(1)
⋃
RateM1(1) →D2

rule2: Cmv,avg(0)
⋃

Rog(0) →D2
rule3: ModuleNum(0)

⋃
Rog(3)

⋃
RateM(3) → D1

rule4: Com(0)
⋃

RateL(3)
⋃
RateM(0) → D2

By analyzing rules that cover many samples, we find some useful knowledge
below. If the global motion is dominant in a P frame, there is much energy and
few motion models, generally only one model; its motion centroid is near the
center; and there are many intra-coded macroblocks in the case of few motion
vectors. If the local motion is dominant in a P frame, there is little energy and
more than two motion models; its motion centroid is far from the center; its
motion radii is long; and the ratio of low-changed macroblocks is high.

Next 937 P frames are used as test data for our experiment. These data make
rule-match via the minority priority strategy to cope with conflict and inconsis-
tency among them. The results are listed in Table 7. Furthermore, distribution
information of wrong recognition of two types of P frames is listed in Table 8.

In addition, we have designed experiments to compare rough-set-based
method adopted in the paper with other solutions. One is decision tree with
ID3 algorithm [28]; another is the SVMs(Support Vector Machines) classifier
[2]. These classifiers are tested with the same test set. The accuracy with each
classifier is shown in Table 9. By observing three groups of accuracy in Table 9,
we can conclude that the rough-set-based method is better than the other two
algorithms and more helpful for global-motion analysis of video.

Table 7. Distribution of Recognition Ratio

Right recognition Wrong recognition unknown recognition

Recognition count 797 142 28

Percentage (%) 82.4 14.7 2.9

Table 8. Distribution of Wrong Recognition

Original type Count Recognition type Count Percentage (%)

Global motion 232 79
Global motion 294 Non-global motion 56 19

Unknown recognition 6 2

Non-global motion 565 84
Non-global motion 673 Global motion 86 12.8

Unknown recognition 22 3.2

Table 9. Accuracy with Each Classifier

Global motion Acc. Non-global motion Acc. Total motion Acc.

Roughset 79% 84% 82.4%

Decision tree 74.5% 80.2% 78.4%

SVMs 71% 83.6% 79.8%
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7.3 Experiments of Shot Boundary Detection

Results of the dual-sliding-window-based detection method are shown in Ta-
ble 10. There are two definitions as following:

RateF = CR/(CR + CL), (39)

RateR = CR/(CR + CW ), (40)

where RateF denotes the ratio of full detection, RateR denotes the ratio of right
detection, CR denotes the count of right detections, CL denotes the count of
leak detections and CW denotes the count of wrong detections.

In Table 10, C1 denotes the frame count, C2 denotes the count of abrupt
transition, and CW denotes the count of wrong detections. Table 10 shows that
the dual-sliding-window-based detection method is able to completely detect
abrupt transition of these video; the ratios of full detection are 100% and the
ratios of right detection are also high. Some wrong detections happening in the
video of Bless and Garfield are caused by gradual transitions. However, excessive
segmentation has no passive influence on shot classification and clustering. Shots
produced by excessive partition are similar in their content, so shot clustering
will put them together finally.

Because the shot boundary detection is the foundation of video analysis, its
accuracy has great influence on the following work. The experiments show that
the dual-sliding-window-based detection method is perfect, so it’s adopted in
our video retrieval system.

Table 10. Results of Dual-Sliding-Window-Based Detection Method

Clips C1 C2 CR CL CW RateF RateR

Bless 1092 22 22 0 4 100% 85%

Toothpaste ad 845 26 26 0 0 100% 100%

Garfield 2332 92 92 0 5 100% 95%

8 Motion-Information-Based Video Retrieval System

An overview of a motion-information-based video retrieval system is given in
this section (see the diagram in Fig. 8). The luminance information of video
is extracted from MPEG-2 video database at first. Then shot boundary detec-
tion is processed via analyzing the luminance information. Motion features are
extracted by analyzing P frames, and they are pre-classified on the RIDAS plat-
form. The ratio of each type of P frames in a shot is computed to check the type
of the shot; meanwhile feature attributes are restored in the motion information
database. Finally, users submit the retrieval shot via the user interface, and the
system returns results of shots sorted by similarity.

Shots that users submit via the user interface of the shot retrieval system are
processed immediately. Users can choose the shot from video database or any
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Checking shot type 

Feature matching User 

Fig. 8. Diagram of the Motion-Information-Based Video Retrieval System

shots with MPEG-2 format. If the shots are obtained from video database, mo-
tion features are directly queried from the motion information database and
matched via a certain algorithm. Otherwise, types of shots still need to be
checked by analyzing motion information. Shots with different motion types
are processed in different ways. The process is shown in Fig. 9.

Firstly, motion information of P frames in a shot is extracted as in Section
3.2. Secondly, P frames are pre-classified via the rough set platform as in Section
3.3. Thirdly, the values of GlobalRate and NonglobalRate are computed and
used to check the motion type of the shot as in Section 5. Finally, if the local
motion is dominant in the shot, shots with local motions in the video database
are retrieved, or else shots with global motions are retrieved as in Section 6.
The retrieval of shots with local motions is relative with the objects on the
foreground. Local motion vectors are the differences between original motion
vectors and global motion vectors, so the global motion information should be
removed at first when retrieving shots with local motions. In this system, local-
motion-information-based shot retrieval has not been achieved completely, which
is our future work.

A motion-information-based video retrieval system prototype has been de-
signed. Its developing platform is Visual C++ 6.0 and its user interface is shown
in Fig. 10. The topside menu bar is used to choose video files and retrieval sam-
ples and to operate the retrieval of shots. The left of the window is used to
display the content of video data, the scroll bar and buttons are used to operate
display modes of video. On the right, several small windows show key frames of
video shots which are sorted by similarity after the retrieval of shots. If a small
window is clicked, the relative shot can be shown in the left of the window.

Experiments are done in the video retrieval system. As shown in Fig. 10, a
shot with the focus camera motion is taken as the retrieval sample, then six
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Fig. 10. Video Retrieval Prototype System
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similar shots as results return to users . All result shots are separately explored
and it’s found that the global motions are dominant in all the shots and they
are all similar with the submitted shot with the focus camera motion. So the
experiment effect is well done.

9 Conclusions

Motion plays an important role as a source of unique information about video
data in video retrieval. Unfortunately, video data analysis is not robust due to
disturbance of coding at present, which is avoided only through transcendental
knowledge. In this article, a robust video retrieval system based on motion in-
formation is proposed. In this system, video are divided into shots at first. The
dual-sliding-window-based detection method is adopted to detect shot bound-
aries. Then video frames are pre-classified via the rough-set-based method and
the motion types of shots are checked. When users input samples to retrieve
video, the shots of global motions and local motions can be separately retrieved
from a video database according to the motion type of retrieval samples. Exper-
iments prove that this approach works well.

The most important algorithm in the system is the rough-set-based video pre-
classification. Feature attributes of P frames are extracted by analyzing motion
vectors and macroblock type fields, which are crucial but usually ignored. Then P
frames are classified as the global type and the non-global type via the rough set
classifier, so that global motion models with more precise parameters can be built
up. Furthermore, the ratio of P frames with each motion type are calculated,
and used to check motion types of shots. If they are shots with global motions,
similar shots are retrieved from video database and displayed as the result set
by use of the shot distance algorithm. If they are shots with local motions, the
analysis should be used after removing of global motion information, which is
our future work. In addition, more experiments need to be done to improve the
results further in the future. All data used in the paper can be obtained from
the website [8].
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Abstract. Since its introduction by George Boole during the mid-1800s,
Boolean algebra has become an important part of the lingua franca of
mathematics, science, engineering, and research in artificial intelligence,
machine learning and data mining. The Boolean reasoning approach has
manifestly become a powerful tool for designing effective and accurate
solutions for many problems in decision-making and approximate rea-
soning optimization. In recent years, Boolean reasoning has become a
recognized technique for developing many interesting concept approx-
imation methods in rough set theory. The problem considered in this
paper is the creation of a general framework for concept approximation.
The need for such a general framework arises in machine learning and
data mining. This paper presents a solution to this problem by intro-
ducing a general framework for concept approximation which combines
rough set theory, Boolean reasoning methodology and data mining. This
general framework for approximate reasoning is called Rough Sets and
Approximate Boolean Reasoning (RSABR). The contribution of this pa-
per is the presentation of the theoretical foundation of RSABR as well as
its application in solving many data mining problems and knowledge dis-
covery in databases (KDD) such as feature selection, feature extraction,
data preprocessing, classification of decision rules and decision trees, as-
sociation analysis.

Keywords: Rough sets, data mining, boolean reasoning, feature selec-
tion and extraction, decision rule construction, discretization, decision
tree induction, association rules, large data tables.

1 Introduction

The rapidly growing volume and complexity of modern databases make the need
for technologies to describe and summarize the information they contain increas-
ingly important. Knowledge Discovery in Databases (KDD) and data mining are
new research areas that try to overcome this problem. In [32], KDD was charac-
terized as a non-trivial process of identifying valid, novel, potentially useful, and
ultimately understandable patterns in data, while data mining is a process of ex-
tracting implicit, previously unknown and potentially useful patterns and rela-
tionships from data, and it is widely used in industry and business applications.
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As the main step in KDD, data mining methods are required to be not only
accurate but also to deliver understandable and interpretable results for users,
e.g., through visualization. The other important issue of data mining methods is
their complexity and scalability. Presently, data mining is a collection of methods
from various disciplines such as mathematics, statistics, logics, pattern recogni-
tion, machine learning, non-conventional models and heuristics for computing
[43], [45], [155] [67].

Concept approximation is one of the most fundamental issues in machine
learning and data mining. The problem considered in this paper is the creation
of a general framework for concept approximation. The need for such a general
framework arises in machine learning and data mining. Classification, clustering,
association analysis or regression are examples of well-known problems in data
mining that can be considered in the context of concept approximation. A great
effort by many researchers has led to the design of newer, faster and more efficient
methods for solving the concept approximation problem [100].

Rough set theory has been introduced by Zdzis�law Pawlak [109] as a tool for
concept approximation relative to uncertainty. Basically, the idea is to approx-
imate a concept by three description sets, namely, lower approximation, upper
approximation and boundary region. These three sets have been fundamental to
the basic approach of rough set theory, since its introduction by Zdzis�law Pawlak
during the early 1980s (see, e.g., [107], [108], [109], [110]). The approximation
process begins by partitioning a given set of objects into equivalence classes
called blocks, where the objects in each block are indiscernible from each other
relative to their attribute values. The approximation and boundary region sets
are derived from the blocks of a partition of the available objects. The bound-
ary region is constituted by the difference between the lower approximation and
upper approximation, and provides a basis for measuring the “roughness” of an
approximation. Central to the philosophy of the rough set approach to concept
approximation is minimization of the boundary region. This simple but brilliant
idea leads to many efficient applications of rough sets in machine learning and
data mining such as feature selection, rule induction, discretization or classifier
construction [57], [58], [143], [137], [142], [79].

Boolean algebra has become part of the lingua franca of mathematics, science,
engineering, and research in artificial intelligence, machine learning and data
mining ever since its introduction by George Boole during the 19th century [13].
In recent years, the combination of Boolean reasoning approach and rough set
methods have provided powerful tools for designing effective as well as accurate
solutions for many machine learning and data mining problems [141], [97], [91],
[162], [142], [139], [164], [61], [38].

The problem considered in this paper is the creation of a general framework
for concept approximation. The need for such a general framework arises in ma-
chine learning and data mining. This paper presents a solution to this problem
by introducing a general framework for concept approximation which combines
rough set theory, Boolean reasoning methodology and data mining. This gen-
eral framework for approximate reasoning is called Rough Sets and Approximate
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Boolean Reasonin (RSABR). The contribution of this paper is the presentation
of the theoretical foundation of RSABR as well as its application in solving many
data mining problems and knowledge discovery in databases (KDD) such as fea-
ture selection, feature extraction, data preprocessing, classification of decision
rules and decision trees, association analysis.

1.1 Overview of Achieved Results

The discretization method based on standard Boolean reasoning approach has
been described and explored in the author’s Ph.D. dissertation of [79]. This
section presents the assessment of advancements regarding the stated problems
and summarizes the results achieved by the author from 1998.

1. Approximate Boolean reasoning as a new approach to problem
solving in rough sets and data mining:
As it has been mentioned in previous sections, the rough sets methods based
on the straightforward application of Boolean reasoning approach were not
suitable for data mining. The critical factor is the complexity and the scala-
bility of the standard methodology. Approximate Boolean Reasoning (ABR)
has been proposed as an alternative approach to overcome those problems
[140], [29], [90].

Each approximate method is characterized by two parameters: the quality
of approximation and the computation time. Searching for the proper bal-
ancing between these parameters is the biggest challenge of modern heuris-
tics. In the Approximate Boolean Reasoning approach not only calculation
of prime implicants – which is the most time-consuming step – but every
step in the original Boolean reasoning methodology can be approximately
performed to achieve an approximate solution. Thus the ABR approach to
problem solving consists of the following steps:

– Modeling: Represent the problem or a simplified problem by a collec-
tion of boolean equations.

– Reduction: Condense equations into an equivalent or approximate prob-
lem over a single boolean equation of the form f(x1, x2, . . . , xn) = 0 (or,
dually, f = 1).

– Development: Generate an approximate solution of the formulated
problem over f .

– Reasoning: Apply a sequence of approximate reasoning steps to solve
the problem.

2. RSABR approach to discretization problem:
Optimal discretization problem has been investigated as an illustration of
many ideas of approximate Boolean reasoning methodology. Let us survey
the results achieved by application of the ABR approach to discretization.

The greedy heuristic for the optimal discretization problem is called MD-
algorithm (Maximal Discernibility) for discretization since it is using
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discernibility measure as a quality function. The detailed analysis of MD-
algorithm has been performed in [8]. Moreover, both global and local versions
of the dicretization method based on MD-heuristics were presented in [8] and
implemented in the popular RSES1 system.

Both discretization and attribute selection are data preprocessing tech-
niques that cause a loss of some information in data. Rough set methodology
to the classification problem is based on searching for some relevant sets of
attributes called reducts. It has been shown that usually, fewer short reducts
can make a better rough classifier than a single reduct. Unfortunately, opti-
mal discretization leaves only one reduct in the decision table.

The relationship between discretization and short reducts has been inves-
tigated in [81] and the discretization method that preserves all short reducts
(of a predefined size) has been proposed on the basis of the ABR approach.

Optimal SQL-querying method for discretization was another application
of ABR approach to discretization problem [83]. The idea was based on local-
izing the best cut using “divide and conquer” technique. It has been shown
that for data table with n objects, it is enough to use only O(log n) simple
queries to find the cut that is very close to the optimal with respect to discerni-
bility measure. This technique has been generalized for other measures [84].

3. RSABR approach to feature selection and feature extraction prob-
lem:
In rough set theory, the feature selection problem is defined in term of reducts
[111], i.e., irreducible subsets of most informative attributes of a given de-
cision table or information system. The idea of minimal description length
principle (MDLP) states that sometime we should search for the proper bal-
ance between a loss of accuracy and the more compact description of data
models. Thus rough set methods are searching for short reducts to build
efficient classifiers. It has been shown that every reduct exactly corresponds
to one prime implicant of an encoding Boolean function called discernibility
function [143].

A set of attributes is called approximate reduct if it preserves a neces-
sary information (with a satisfactory degree) to build a compatible classifier.
Many experimental results are showing that approximate reducts, which are
shorter than the exact ones, can construct more accurate classifiers. The
problem of searching for minimal approximate reducts was investigated in
[96], where the complexity of this problem has been shown and an heuristic
algorithm based on the ABR approach has been proposed.

The set of all reducts of a given decision table is an antichain on the set
of attributes. Thus the maximal number of reducts is equal to

N(k) =
(

k

-k/2.

)
,

where k is the number of attributes. The k-attribute decision table is called
malicious if it contains exactly N(k) reducts. Characterization of malicious

1 RSES home page: http://logic.mimuw.edu.pl/∼rses/
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decision tables and possibility of their construction were discussed in [89]
where, once again, the ABR approach plays a crucial role.

Discretization of numeric attributes can be treated not only as a data
reduction process but also as a feature extraction method since it creates a
new set of attributes. Some extensions of discretization methods based on the
ABR schema in the context of feature extraction problem were investigated
in this research. Particularly, methods of creating new features defined either
by linear combinations of attributes (hyperplanes) or by sets of symbolic
values were presented [93], [103].

4. RSABR approach to decision trees:
The main philosophy of RSABR methodology to the classification problem
is based on managing the discernible objects. Thus discernibility becomes
an interesting measure for many applications of rough sets in data mining.
Decision tree is one of the most popular classification methods. The deci-
sion tree construction method based on the discernibility measure has been
proposed. This method, also known as MD-decision tree2, creates binary de-
cision tree using cuts on continuous attributes, binary partition of values for
symbolic values. Properties and a detailed comparison analysis with other
techniques were presented in [82], [103], [140].

5. Soft discretization and soft decision trees:
Crisp partitions defined by cuts in standard discretization and decision tree
methods may cause a misclassification of objects that are very close to those
cuts. Soft cuts were proposed as a novel concept for mining data with numeric
attributes. Unlike traditional cuts, each soft cut is defined as an interval of
possible cuts and represents a family of possible partitions. Modified classi-
fication methods based on soft cuts and rough set theory were presented in
[80], [85].

Soft decision trees, i.e., decision trees using soft cuts, have some advan-
tages compared to the traditional ones. Firstly, this approach can overcome
the overfitting problem without pruning. Secondly, it is possible to efficiently
construct soft decision trees from large data bases [84], [88]. Two techniques
called rough decision tree and fuzzy decision tree were proposed in [87], [94].

6. Relationship between rough sets and association rules:
Association rule discovery [3] is one of the most famous data mining tech-
niques that can be applied to databases of transactions where each transac-
tion consists of a set of items. In such a framework the problem is to discover
all associations and correlations among data items where the presence of one
set of items in a transaction implies (with a certain degree of confidence) the
presence of other items. Besides market basket data, association analysis is
also applicable to other application domains such as bioinformatics, medical
diagnosis, web mining, and scientific data analysis.

All existing methods for association rule generation consists of two steps
(1) searching for frequent item sets, and (2) generating association rules from

2 MD = maximal discernibility.
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frequent item sets. The correspondence between step (2) and the problem of
searching for approximate reducts has been shown in [96]. This important
result implies that
– Every method for approximate reducts problem, including those meth-

ods based on the ABR approach, can be applied to association rule
generation.

– All existing association rule techniques can be used to solve the reduct
searching problem in rough set theory.

As an example, Apriori algorithm [3] is one of the first association rule
techniques. In [86], a method based on the apriori idea for construction of
lazy rough classifier has been proposed.

1.2 Organization of the Paper

This paper, as a summarization of achieved results, presents the foundation
of ABR methodology and its applications in rough sets and data mining. The
presentation is limited to detailed description of methods and algorithms as well
as the discussion of properties of the proposed methods. Experimental results
are omitted and the reader is directed to other articles in the reference list.

This paper is organized as follows. The basic theory and methods central
to the application of rough sets in data mining, are presented in Sect. 2. This
section includes an introduction to knowledge discovery and data mining in
Sect. 2.1 and the rough set approach to data mining in Sect. 2.4. Sect. 3 pro-
vides an introduction to Boolean algebra and Boolean functions. An approach
to Boolean reasoning as well as approximate Boolean reasoning is presented
in Sect. 4. Sect. 5 explores the application of approximate Boolean reasoning
(ABR) in feature selection and decision rule generation. The rough set and the
ABR approach to the discretization is presented in Sect. 6. Application of ABR
in decision tree induction is explored in Sect. 7. The ABR approach to feature
extraction is given in Sect. 8. Rough sets, ABR and association analysis are
presented in Sect. 9. Finally, rough set methods for mining large databases are
presented in Sect. 10.

2 Basic Notions of Data Mining, Rough Set Theory and
Rough Set Methodology in Data Mining

This section introduces basic jargon and definitions for a few related research dis-
ciplines including knowledge discovery from databases (KDD), data mining and
rough set theory. We also characterize the basic idea of rough set methodology
to data mining.

2.1 Knowledge Discovery and Data Mining

Knowledge discovery and data mining (KDD) – the rapidly growing interdisci-
plinary field which merges together database management, statistics, machine
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learning and related areas – aims at extracting useful knowledge from large col-
lections of data.

There is a difference in understanding the terms “knowledge discovery” and
“data mining” between people from different areas contributing to this new field.
In this paper we adopt the following definition of these terms [32]:

Knowledge discovery in databases is the process of identifying valid,
novel, potentially useful, and ultimately understandable patterns/models
in data. Data mining is a step in the knowledge discovery process con-
sisting of particular data mining algorithms that, under some acceptable
computational efficiency limitations, finds patterns or models in data.

Therefore, an essence of KDD projects relates to interesting patterns and/or
models that exist in databases but are hidden among the volumes of data. A
model can be viewed as “a global representation of a structure that summarizes
the systematic component underlying the data or that describes how the data
may have arisen”. In contrast, “a pattern is a local structure, perhaps relating
to just a handful of variables and a few cases”.

Usually, a pattern is an expression φ in some language L describing a subset
Uφ of the data U (or a model applicable to that subset). The term pattern goes
beyond its traditional sense to include models or structure in data (relations
between facts).

Data mining – an essential step in KDD process – is responsible for algorith-
mic and intelligent methods for pattern (and/or model) extraction from data.
Unfortunately, not every extracted pattern becomes knowledge. To specify the
notion of knowledge for the need of algorithms in KDD processes, we should
define an interestingness value of patterns by combining their validity, novelty,
usefulness, and simplicity. Interestingness functions should be defined to reflect
the interest of users.

Given an interestingness function

ID : L → ΔI ,

parameterized by a given data set D, where ΔI ⊆ R is the domain of ID, a
pattern φ is called knowledge if for some user defined threshold i ∈ MI

ID(φ) > i.

A typical process of KDD includes an iterative sequence of the following steps:

1. data cleaning: removing noise or irrelevant data,
2. data integration: possible combining of multiple data sources,
3. data selection: retrieving of relevant data from the database,
4. data transformation,
5. data mining,
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6. pattern evaluation: identifying of the truly interesting patterns representing
knowledge based on some interestingness measures, and

7. knowledge presentation: presentation of the mined knowledge to the user by
using some visualization and knowledge representation techniques.

The success of a KDD project strongly depends on the choice of proper data
mining algorithms to extract from data those patterns or models that are really
interesting for the users. Up to now, the universal recipe of assigning to each
data set its proper data mining solution does not exist. Therefore, KDD must
be an iterative and interactive process, where previous steps are repeated in
an interaction with users or experts to identify the most suitable data mining
method (or their combination) to the studied problem.

One can characterize the existing data mining methods by their goals, func-
tionalities and computational paradigms:

– Data mining goals: The two primary goals of data mining in practice tend
to be prediction and description. Prediction involves using some variables or
fields in the database to predict unknown or future values of other variables
of interest. Description focuses on finding human interpretable patterns de-
scribing the data. The relative importance of prediction and description for
particular data mining applications can vary considerably.

– Data mining functionalities: Data mining can be treated as a collection
of solutions for some predefined tasks. The major classes of knowledge dis-
covery tasks, also called data mining functionalities, include the discovery of
• concept/class descriptions,
• association,
• classification,
• prediction,
• segmentation (clustering),
• trend analysis, deviation analysis, and similarity analysis.
• dependency modeling such as graphical models or density estimation,
• summarization such as finding the relations between fields, associations,

visualization; characterization and discrimination are also forms of data
summarization.

– Data mining techniques: the type of methods used to solve the task is
called the data mining paradigm. For example, by the definition, standard
statistical techniques are not data mining. However statistics can help greatly
in the process of searching for patterns from data by helping to answer sev-
eral important questions about data, like: “What patterns are there in my
database?”, “What is the chance that an event will occur?”, “Which patterns
are significant?” or “What is a high level summary of the data that gives me
some idea of what is contained in my database?”. One of the great values
of statistics is in presenting a high level view of the database, e.g., pie chart
or histogram, that provides some useful information without requiring every
record to be understood in detail. Some typical data mining techniques are
listed below:
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• rule induction;
• decision tree induction;
• instancebased learning (e.g., nearest neighbors);
• clustering;
• neural networks;
• genetic algorithms/genetic programming;
• support vector machine.

Many combinations of data mining paradigm and knowledge discovery task
are possible. For example the neural network approach is applicable to both
predictive modeling task as well as segmentation task.

Any particular implementation of a data mining paradigm to solve a task is
called a data mining method. Lots of data mining methods are derived by mod-
ification or improvement of existing machine learning and pattern recognition
approaches to manage with large and nontypical data sets. Every method in data
mining is required to be accurate, efficient and scalable. For example, in predic-
tion tasks, the predictive accuracy refers to the ability of the model to correctly
predict the class label of new or previously unseen data. The efficiency refers to
the computation costs involved in generating and using the model. Scalability
refers to the ability of the learned model to perform efficiently on large amounts
of data.

For example, C5.0 is the most popular algorithm for the well-known method
from machine learning and statistics called decision tree. C5.0 is quite fast for
construction of decision tree from data sets of moderate size, but becomes in-
efficient for huge and distributed databases. Most decision tree algorithms have
the restriction that the training samples should reside in main memory. In data
mining applications, very large training sets of millions of samples are common.
Hence, this restriction limits the scalability of such algorithms, where the de-
cision tree construction can become inefficient due to swapping of the training
samples in and out of main and cache memories. SLIQ and SPRINT are examples
of scalable decision tree methods in data mining.

Each data mining algorithm should consist of the following components (see
[32]):

1. Model Representation is the language L for describing discoverable pat-
terns. Too limited a representation can never produce an accurate model
what are the representational assumptions of a particular algorithm more
powerful representations increase the danger of overfitting and resulting in
poor predictive accuracy more complex representations increase the diffi-
culty of search. More complex representations increase the difficulty of model
interpretation

2. Model Evaluation estimates how well a particular pattern (a model and its
parameters) meet the criteria of the KDD process. Evaluation of predictive
accuracy (validity) is based on cross validation. Evaluation of descriptive
quality involves predictive accuracy, novelty, utility, description length, and
understandability of the fitted model. Both logical and statistical criteria
can be used for model evaluation.
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3. Search Method consists of two components:
(a) In parameter search, the algorithm must search for the parameters which

optimize the model evaluation criteria given observed data and a fixed
model representation.

(b) Model search occurs as a loop over the parameter search method: the
model representation is changed so that a family of models is considered.

2.2 Approximate Reasoning Problem

Let us describe an issue of approximate reasoning that can be seen as a con-
nection between data mining and logics. This problem occurs, e.g., during an
interaction between two (human/machine) beings which are using different lan-
guages to talk about objects (cases, situations, etc.) from the same universe.
The intelligence skill of those beings, called intelligent agents, is measured by
the ability of understanding the other agents. This skill is performed by dif-
ferent ways, e.g., by learning or classification (in machine learning and pattern
recognition theory), by adaptation (in evolutionary computation theory), or by
recognition (in recognitive science).

Logic is a science that tries to model the way of human thinking and reasoning.
Two main components of each logic are logical language, and the set of inference
rules. Each logical language contains a set of formulas or well-formulated sen-
tences in the considered logic. Usually, the meaning (semantic) of a formula is
defined by a set of objects from a given universe. A subset X of a given universe
U is called a concept (in L) if and only if X can be described by a formula φ in L.

Therefore, it is natural to distinguish two basic problems in approximate
reasoning, namely: approximation of unknown concepts and approximation of
reasoning scheme.

By concept approximation problem we mean the problem of searching for
description – in a predefined language L – of concepts definable in other language
L∗. Not every concept in L∗ can be exactly described in L, therefore the problem
is to find an approximate description rather than exact description of unknown
concepts, and the approximation is required to be as exact as possible.

In many applications, the problem is to approximate those concepts that are
definable either in the natural language or by an expert or by some unknown
process. For example let us consider the problem of automatic recognition of
“overweight people” from camera pictures. This concept (in the universe of all
people) is understood well in medicine and can be determined by BMI (the Body
Mass Index)3. This concept can be simply defined by weight and height which
are measurable features on each person.

Coverweight =
{
x : 25 ≤ weight(x)

height2(x)
< 30
}

3 BMI is calculated as weight in kilograms divided by the square of height in meters;
according to the simplest definition, people are categorized as underweight (BMI
< 18.5), normal weight (BMI ∈ [18.5, 25)), overweight (BMI ∈ [25, 30)), and obese
(BMI ≥ 30.0).
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The more advanced definitions require more features like sex, age and race. In
this case, the problem is to approximate the concept “overweight people” using
only those features that can be calculated from their pictures.

Concept approximation problem is one of the most important issues in data
mining. Classification, clustering, association analysis or regression are examples
of well-known problems in data mining that can be formulated as concept ap-
proximation problems. A great effort of many researchers has been done to design
newer, faster and more efficient methods for solving the concept approximation
problem.

The task of concept approximation is possible only if some knowledge about
the concept is available. Most methods in data mining realize the inductive
learning approach, which assumes that a partial information about the concept
is given by a finite sample, called the training sample or training set, consisting
of positive and negative cases (i.e., objects belonging or not belonging to the
concept). The information from training tables makes the search for patterns
describing the given concept possible. In practice, we assume that all objects
from the universe U are perceived by means of information vectors being vectors
of attribute values (information signature). In this case, the language L consists
of boolean formulas defined over accessible (effectively measurable) attributes.

Any concept C in a universe U can be represented by its characteristic function
dC : U → {0, 1} such that

dX(u) = 1 ⇔ u ∈ X.

Let h = L(S) : U → {0, 1} be the approximation of dC which is inducted from
a training sample S by applying an approximation algorithm L. Formally, the
approximation error is understood as

errC
U (h) = μ({x ∈ U : h(x) �= dC(x)}),

where μ is the probability measure of a probability space defined on U. In prac-
tice, it is hard to determine the value of exact error errC

U (h) because both the
function μ and its argument are unknown. We are forced to approximate this
value by using an additional sample of objects called the testing sample or the
testing set. The exact error can be estimated by using testing sample T ⊂ U as
follows:

errC
U (h) ' errC

T (h) =
|{x ∈ T : h(x) �= dC(x)}|

|T | .

More advanced methods for evaluation of approximation algorithms are de-
scribed in [119]. Let us recall some other popular measures which are very utilized
by many researchers in practical applications:

– confusion matrices;
– accuracy, coverage;
– lift and gain charts;
– receiver operation characteristics (roc) curves;
– generality;
– stability of the solution.
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2.3 Rough Set Preliminaries

One of the basic principles of set theory is the possibility of precise definition
of any concept using only the “membership relation”. The classical set theory is
operating on “crisp” concepts and it is within “exact science” like mathematics.
Unfortunately, in many real-life situations, we are not able to give an exact
definition of the concept.

Except the imprecise or vague nature of linguistic concepts themselves (see
the Sect. 2.2), the trouble may be caused by the lack of information or noise.
Let us consider the photography of solar disk in Fig. 1. It is very hard to define
the concept “solar disk” by giving a set of pixels. Thus nondeterminism of the
membership relation “the pixel (x, y) belongs to the solar disk” is caused by
uncertain information.

Fig. 1. Can you define the concept “solar disk” by giving a set of pixels on this picture?

Rough set theory has been introduced by Professor Z. Pawlak [109] as a
tool for approximation of concepts under uncertainty. The theory is featured
by operating on two subsets, a lower approximation and upper approximation.
Rough set theory has two fundamental aspects:

– Approximation of crisp concepts under uncertainty.
Uncertain situations are caused by incomplete information about all objects
in the universe. In this case, lower and upper approximations are imprecise
representations of the concept;

– Approximation of vague concepts.
From the philosophical point of view the vague concepts are characterized by
existing of borderline cases, which cannot be clearly classified to the concept
or its complement [55]. In this sense, rough set theory realizes the idea of
vagueness where borderline cases are approximated by the boundary region,
i.e., the difference between upper and lower approximations.

2.3.1 Information Systems
In contrast with the classical set theory, rough set theory assumes that there
are some additional information about elements. An information system [111]
is a pair S = (U,A), where U is a non-empty, finite collection of objects and A
is a non-empty, finite set, of attributes. Each a ∈ A corresponds to the function
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a : U → Va called evaluation function, where Va is called the value set of a. Ele-
ments of U could be interpreted as, e.g., cases, states, patients, observations, etc.

The above formal definition of information systems is very general and it
covers many different “real information systems”. Let us mention some of them.

Example 1. “Information table” is the simplest form of information systems.
It can be implemented as two-dimensional array (matrix), which is standard
data structure in every programming language. In information table, we usually
associate its rows to objects, its columns to attributes and its cells to values of
attributes on objects.

Table 1. Example of information table: a data set contains ten objects from heart-
disease domain

Patient Age Sex Cholesterol Resting ECG Heart rate Sick

p1 53 M 203 hyp 155 yes

p2 60 M 185 hyp 155 yes

p3 40 M 199 norm 178 no

p4 46 F 243 norm 144 no

p5 62 F 294 norm 162 no

p6 43 M 177 hyp 120 yes

p7 76 F 197 abnorm 116 no

p8 62 M 267 norm 99 yes

p9 57 M 274 norm 88 yes

p10 72 M 200 abnorm 100 no

Example 2. Data base systems are also examples of information systems. The
universe U is the sets of records and A is the set of attributes in data base.
Usually, data bases are used to store a large amount of data and the access to
data (e.g., computing the value of attribute a ∈ A for object x ∈ U) is enabled
by some data base tools like SQL queries in relational data base systems.

Given an information system S = (U,A), we associate with any non-empty set
of attributes B ⊆ A the information signature or B-information vector for any
object x ∈ U by

infB(x) = {(a, a(x)) : a ∈ B}.

The set INF (S) = {infA(x) : x ∈ U} is called the A-information set. The no-
tions of “information vector” and “information set” have very easy interpreta-
tions. In some sense, they tabulate all “information systems S” by information set
INF (S), where information vectors are in rows, and attributes are in columns.
Hence, they are very easy to handle with arbitrary information systems.

In supervised learning problems, objects from training set are pre-classified
into several categories or classes. To manipulate this type of data we use a
special case of information systems called decision systems which are information
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systems of the form S = (U,A∪{dec}), where dec /∈ A is a distinguished attribute
called decision. The elements of attribute set A are called conditions.

In practice, decision systems contain description of a finite sample U of objects
from larger (possibly infinite) universe U, where conditions are such attributes
that their values are always known for all objects from U, but decision is in
general a hidden function except objects from the sample U . Usually decision
attribute is a characteristic functions of an unknown concept, or classification
of objects into several classes. As we mentioned in previous sections, the main
problem of learning theory is to generalize the decision function, which is defined
on the sample U , to the whole universe U. Below we present the example of
decision system.

Example 3. “Decision table” is one of the forms of information systems which
is used most often in rough set theory. It can be defined from information table
by appointing some attributes to conditions and some attribute to decision.
For example, from information table presented in Table 1, one can define new
decision table by selecting attributes: Age, Sex, Cholesterol, Resting ECG,
and Heart rate as condition attributes and Sick as decision.

Without loss of generality one can assume that the domain Vdec of the decision
dec is equal to {1, . . . , d}. The decision dec determines a partition

U = CLASS1 ∪ · · · ∪ CLASSd

of the universe U , where

CLASSk = {x ∈ U : dec(x) = k}

is called the k-th decision class of S for 1 ≤ k ≤ d.
Let X ⊂ U be an arbitrary set of objects, by “counting table” of X we mean

the vector
CountTable(X) = 〈n1, . . . , nd〉,

where nk = card(X ∩ CLASSk) is the number of objects from X belonging to
the kth decision class.

For example, there are two decision classes in the decision table presented in
Table 1:

CLASSyes = {p1, p2, p6, p8, p9}, CLASSno = {p3, p4, p5, p7, p10},

and the set X = {p1, p2, p3, p4, p5} has class distribution:

ClassDist(X) = 〈2, 3〉.

2.3.2 Standard Rough Sets
The first definition of rough approximation was introduced by Pawlak in his
pioneering book on rough set theory [109], [111]. For any subset of attributes
B ⊂ A, the set of objects U is divided into equivalence classes by the indiscerni-
bility relation and the upper and lower approximations are defined as unions



348 H.S. Nguyen

of corresponding equivalence classes. This definition can be called the attribute-
based rough approximation or “standard rough sets”.

Given an information system S = (U,A), the problem is to define a concept
X ⊂ U , assuming at the moment that only some attributes from B ⊂ A are
accessible. This problem can be also described by appropriate decision table
S = (U,B ∪{decX}), where decX(u) = 1 for u ∈ X , and decX(u) = 0 for u /∈ X .

First one can define an equivalence relation called the B-indiscernibility rela-
tion, denoted by IND(B), as follows

IND(B) = {(x, y) ∈ U × U : infB(x) = infB(y)} . (1)

Objects x, y satisfying relation IND(B) are indiscernible by attributes from B.
By

[x]IND(B) = {u ∈ U : (x,u) ∈ IND (B)},

we denote the equivalence class of IND (B) defined by x.
The lower and upper approximations of X (using attributes from B) are

defined by

LB(X) =
{
x ∈ U : [x]IND(B) ⊆ X

}
and

UB(X) =
{
x ∈ U : [x]IND(B) ∩X �= ∅

}
.

More generally, let S = (U,A ∪ {dec}) be a decision table, where Vdec =
{1, . . . , d}, and B ⊆ A. Then we can define a generalized decision function ∂B :
U → P(Vdec), by

∂B(x) = d
(
[x]IND(B)

)
= {i : ∃u∈[x]IND(B)

d(u) = i}. (2)

Using generalized decision function one can also define rough approximations of
any decision class CLASSi (for i ∈ {1, . . . , d}) by:

LB(CLASSi) = {x ∈ U : ∂B(x) = {i}} , and
UB(CLASSi) = {x ∈ U : i ∈ ∂B(x)} .

The set

POSS(B) = {x : |∂B(x)| = 1} =
d⋃

i=1

LB(CLASSi)

is called the positive region of B, i.e., the set of objects that are uniquely defined
by B.

Example 4. Let us consider again the decision table presented in Table 1, and
the concept CLASSno = {p3, p4, p5, p7, p10} defined by decision attribute Sick.
Let B = {Sex,Resting ECG}, then the equivalent classes of indiscernibility
relation IND(B) are as following:
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{p1, p2, p6} infB(x) = [M,hyp]
{p3, p8, p9} infB(x) = [M,norm]
{p4, p5} infB(x) = [F, norm]
{p7} infB(x) = [F, abnorm]
{p10} infB(x) = [M,abnorm].

Lower and upper approximations of CLASSno are computed as follows:

LB(CLASSno) = {p4, p5} ∪ {p7} ∪ {p10} = {p4, p5, p7, p10}
UB(CLASSno) = LB(CLASSno) ∪ {p3, p8, p9} = {p3, p4, p5, p7, p8, p9, p10}

Description of lower and upper approximations are extracted directly from equiv-
alence classes, e.g.,

Certain rules:

[Sex(x),Resting ECG(x)] = [F, norm] =⇒ Sick(x) = no

[Sex(x),Resting ECG(x)] = [F, abnorm] =⇒ Sick(x) = no

[Sex(x),Resting ECG(x)] = [M,abnorm] =⇒ Sick(x) = no

Possible rules:

[Sex(x),Resting ECG(x)] = [M,norm] =⇒ Sick(x) = no.

The positive region of B can be calculated as follows:

POSB = LB(CLASSno) ∪ LB(CLASSyes) = {p1, p2, p6, p4, p5, p7, p10}.

2.3.3 Rough Set Space
Rough set spaces are structures which allow to formalize the notions of lower
and upper approximations.

Let L be a description language and U be a given universe of objects. Assume
that semantics of formulas from L are defined by subsets of objects from U. Let
[[α]] ⊂ U be the semantics of the formula α in L, i.e., [[α]] is the set of objects
satisfying α. A set A ⊂ U is called L-definable if there exists a formula α ∈ L
such that [[α]] = A.

For any set Φ of formulas from L, we denote by UΦ the collection of all subsets
of U which are definable by formulas from Φ:

UΦ = {[[α]] ⊂ U : for φ ∈ L} .

Definition 1 (rough set space). A rough set space over a language L is a
structure R = 〈U, Φ,P〉, where Φ is a non-empty set of formulas from L, and
P ⊂ U2

Φ is a non-empty collection of pairs of definable sets from UΦ such that

1. A ⊆ B for every (A,B) ∈ P, and
2. (A,A) ∈ P for each A ∈ UΦ.



350 H.S. Nguyen

Let us assume that there is a vague inclusion function (see Skowron and Stepa-
niuk [144]):

ν : U× U → [0, 1]

measuring the degree of inclusion between subsets of U. Vague inclusion must be
monotone with respect to the second argument, i.e., if Y ⊆ Z then ν(X,Y ) ≤
ν(X,Z) for X,Y, Z ⊆ U .

Definition 2 (rough approximation of concept). Let R = 〈U, Φ,P〉 be a
rough set space. Any pair of formulas (α, β) from Φ is called the rough approxi-
mation of a given concept X ⊂ U in R if an only if

1. ([[α]], [[β]]) ∈ P,
2. ν([[α]], X) = 1 and ν(X, [[β]]) = 1.

The sets [[α]] and [[β]] are called the lower and the upper approximation of X,
respectively. The set [[β]] − [[α]] is called the boundary region.

Let us point out that many rough approximations of the same concept may exist,
and conversely, the same pair of definable sets can be the rough approximations
of many different concepts. The concept X ⊂ U is called R-crisp if there exists
such a formula α ∈ Φ that (α, α) is one of the rough approximations of X . Rough
set methods tend to search for the optimal rough approximation with respect to
a given evaluation criterion. For example, if we know that the target concept is
crisp then we should find the rough approximation with the thinnest boundary
region.

Rough set theory can be also understood as an extension of the classical set
theory where the classical “membership relation” is replaced by “rough mem-
bership function”.

Definition 3 (rough membership function). A function f : U → [0, 1] is
called a rough membership function of a concept X in a rough set space AS =
〈U, Φ,P〉 if and only if the pair (Lf , Uf), where

Lf = {x ∈ U : f(x) = 1} and Uf = {x ∈ U : f(x) > 0},

establishes a rough approximation of X in AS = 〈U, Φ,P〉.

In practice, the set of formulas Φ is not specified explicitly and the task of search-
ing for rough approximations of a concept can be formulated as the problem of
searching for “constructive” or “computable” function f : U → [0, 1] such that
ν(Lf , X) = 1, ν(X,Uf ) = 1, and f is optimal with respect to a given optimiza-
tion criterion. Usually, the quality of a rough membership function is evaluated
by the sets Lf , Uf and the complexity of the function f .

In case of the classical rough set theory, any set of attributes B determines a
rough membership function μB

X : U → [0, 1] as follows:

μB
X(x) =

∣∣X ∩ [x]IND(B)

∣∣∣∣[x]IND(B)

∣∣ . (3)
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This function defines rough approximations of the concept X :

LB(X) = LμB
X

=
{
x : μB

X(x) = 1
}

=
{
x ∈ U : [x]IND(B) ⊆ X

}
, and

UB(X) = UμB
X

=
{
x : μB

X(x) > 0
}

=
{
x ∈ U : [x]IND(B) ∩X �= ∅

}
,

which are compatible with the definition of B-lower and the B-upper approxi-
mation of X in S in Sect. 2.3.1.

2.4 Rough Set Approach to Data Mining

In recent years, rough set theory has attracted attention of many researchers
and practitioners all over the world, who have contributed essentially to its de-
velopment and applications. With many practical and interesting applications
rough set approach seems to be of fundamental importance to AI and cognitive
sciences, especially in the areas of machine learning, knowledge acquisition, de-
cision analysis, knowledge discovery from databases, expert systems, inductive
reasoning and pattern recognition [112], [42], [41], [139], [142].

2.4.1 Inductive Searching for Rough Approximations
As it has been described in Sect. 2.2, the concept approximation problem can be
formulated in the form of a teacher-learner interactive system where the learner
have to find (learn) an approximate definition of concepts (that are used by
the teacher) in his own language. The complexity of this task is caused by the
following reasons:

1. Poor expressiveness of the learner’s language: Usually the learner,
which is a computer system, is assumed to use a very primitive description
language (e.g., the language of propositional calculus or a simplified first
order language) to approximate compound linguistic concepts.

2. Inductive assumption: the target concept X is unknown on the whole
universe U of objects but is partially given on a finite training set U � U of
positive examples X = U ∩ X and negative examples X = U −X ;

In the classical rough set theory, rough approximations of a concept are de-
termined for objects from U only. More precisely, classical rough approximations
are extracted from the restricted rough set space AS|U = 〈U,Φ,P|U 〉, where Φ is
the set of formulas representing the information vectors over subsets of attributes
and P|U consists of pairs of definable sets restricted to the objects from U . The
aim of rough set methods is to search for rough approximations of a concept in
AS|U with minimal boundary region. Thus classical rough sets do not take care
about unseen objects from U− U .

It is a big challenge to construct high quality rough approximations of concept
from a sample of objects. The inductive learning approach to rough approxima-
tions of concepts can be understood as the problem of searching for an extension
of rough membership function:

U → f : U → [0, 1]
↓ ↓
U → F : U → [0, 1]
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U

XU

X

Fig. 2. Illustration of inductive concept approximation problem

Function F should be constructed using information from the training set U
and should satisfy the following conditions:

C1: F should be determined for all objects from U;
C2: F should be a rough membership function for X ;
C3: F should be the “best” rough membership function, in the sense of approx-

imation accuracy, satisfying previous conditions.

This is only a kind of “wish list”, because it is either very hard (C1) or
even impossible (C2,C3) to find a function that satisfy all of those conditions.
Thus, instead of C1, C2, C3, the function F is required to satisfy some weaker
conditions over the training set U , e.g.,

C2 =⇒ C4: F should be an inductive extension of an efficient rough member-
ship function f : U → [0, 1] for the restricted concept X = U ∩ X . In other
words, instead of being rough membership function of the target concept X ,
the function F is required to be rough membership function for X over U .

C1 =⇒ C5: F should be determined for as many objects from U as possible.
C3 =⇒ C6: Rough approximations defined by f = F|U should be an accurate

approximation of X over U .

Many extensions of classical rough sets have been proposed to deal with this
problem. Let us mention some of them:

– Variable Rough Set Model (VRSM): This method (see [163]) proposed
a generalization of approximations by introducing a special non-decreasing
function fβ : [0, 1] → [0, 1] (for 0 ≤ β < 0.5) satisfying properties:

fβ(t) = 0 ⇐⇒ 0 ≤ t ≤ β and fβ(t) = 1 ⇐⇒ 1 − β ≤ t ≤ 1.
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The generalized membership function called fβ-membership function is then
defined as

μ
fβ

X (x) = fβ (μR(x)) ,

where μR is an arbitrary membership function defined by a relation R. For
example, μR can be classical rough membership function μB

X from Eqn. (3).
In this case, with β = 0 and fβ equal to identity on [0, 1], we have the case
of classical rough set [111];

Fig. 3. Example of fβ for variable precision rough set (β > 0) and classical rough set
(β = 0)

– Tolerance-based and similarity-based Rough Sets: Another idea was
based on tolerance or similarity relation [144], [148]. The tolerance approxi-
mation space [144] was defined by two functions:
1. An uncertainty function

I : U → P(U),

determines tolerance class for each object from U. Intuitively, if we look
at objects from U through “lenses” of available information vectors then
I(x) is the set of objects that “look” similar to x.

2. A vague inclusion function

νU : P(U)× P(U) → [0, 1],

measures the degree of inclusion between two sets.
Together with uncertainty function I, vague inclusion function ν defines the
rough membership function for any concept X ⊂ U as follows:

μI,ν
X (x) = ν(I(x),X ).

Obviously, the right hand side of this equation is not effectively defined fpr
all objects x because the target concept X is known only on a finite sample
U ⊂ U. In practice, we have to induce an estimation of this function from
its restriction to U .
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2.4.2 Applications of Rough Sets
The simple, but brilliant idea of using lower and upper approximations, leads to
many efficient applications of rough sets in machine learning and data mining
like feature selection, rule induction, discretization or classifier construction [57].
The most illustrative example of application relates to classification problem.

Learning to classify is one of most important tasks in machine learning and
data mining (see [77]). Consider an universe X of objects. Assume that objects
from X are partitioned into d disjoint subsets X1, · · · ,Xd called decision classes
(or briefly classes). This partition is performed by a decision function dec : X →
Vdec = {1, · · · , d} which is unknown for the learner. Every object from X is
characterized by attributes from A, but the decision dec is known for objects
from some sample set U ⊂ X only. The information about function dec is given
by the decision table A = (U,A ∪ {dec}).

The problem is to construct from A a function LA : INFA → Vdec in such a
way, that the prediction accuracy, i.e., the probability

P({u ∈ X : dec(u) = LA(infA(u))})

is sufficiently high. The function LA is called decision algorithm or classifier
and the methods of its construction from decision tables are called classification
methods.

It is obvious that the classification can be treated as a concept approximation
problem. The above description of classification problem can be understood as
a problem of multi–valued concept approximation.

The standard (attribute-based) rough approximations are fundamental for
many reasoning methods under uncertainty (caused by the lack of attributes)
and are applicable for the classification problem. However, it silently assumes
that the information system S contains all objects of the universe. This is a kind
of “closed world” assumption, because we are not interested in the generaliza-
tion ability of the obtained approximation. Thus classifiers based on standard
rough approximations often have a tendency to give an “unknown” answer to
those objects x ∈ X − U , for which [x]IND(B) ∩ U = ∅. A great effort of many
researchers in rough set society has been made to modify and to improve this
classical approach. One can find many interesting methods for construction of
rough classifiers such as variable precision rough set model [163], approximation
space [144], tolerance-based rough approximation [148], or classifier-based rough
approximations [9].

Rough set based methods for classification are highly acknowledged in many
practical applications, particularly in medical data analysis, as they can extract
many meaningful and human–readable decision rules from data.

Classification is not the only example of the concept approximation prob-
lem. Many tasks in data mining can be formulated as concept approximation
problems. For example

– Clustering: the problem of searching for approximation of the concept of
“being similar” in the universe of object pairs;
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– Basket data analysis: looking for approximation of customer behavior in
terms of association rules from the universe of transactions.

Rough set theory has an overlap with many other theories. However we will
refrain to discuss these connections here. Despite of the above mentioned con-
nections rough set theory may be considered as the independent discipline on
its own.

The main advantage of rough set theory in data analysis is that it does not
need any preliminary or additional information about data – like probability
in statistics, or basic probability assignment in Dempster-Shafer theory, grade
of membership or the value of possibility in fuzzy set theory. The proposed
approach

– provides efficient algorithms for finding hidden patterns in data,
– finds minimal sets of data (data reduction),
– evaluates significance of data,
– generates sets of decision rules from data,
– is easy to understand,
– offers straightforward interpretation of obtained results,
– enables parallel processing.

3 Boolean Functions

This section contains some basic definitions, notations and terminology that will
be used in the next sections.

The main subject of this section is related to the notion of Boolean functions.
We consider two equivalent representations of Boolean functions, namely the
truth table form, and the boolean expressions form. The latter representation
is derived from the George Boole’s formalism (1854) that eventually became
Boolean algebra [14]. We also discuss some special classes of boolean expressions
that are useful in practical applications.

3.1 Boolean Algebra

Boolean algebra was an attempt to use algebraic techniques to deal with expres-
sions in the propositional calculus. Today, these algebras find many applications
in electronic design. They were first applied to switching by Claude Shannon in
the 20th century [135], [136]. Boolean algebra is also a convenient notation for
representing Boolean functions.

Boolean algebras are algebraic structures which “capture the essence” of the
logical operations AND, OR and NOT as well as the corresponding set-theoretic
operations intersection, union and complement. As Huntington recognized, there
are various equivalent ways of characterizing Boolean algebras [49]. One of the
most convenient definitions is the following.
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Definition 4 (Boolean algebra). The Boolean algebra is a tuple

B = (B,+, ·, 0, 1),

where B is a non-empty set, + and · are binary operations, 0 and 1 are distinct
elements of B that satisfy the following axioms:

Commutative laws: For all elements a, b in B:

a + b = b + a and a · b = b · a. (4)

Distributive laws: · is distributive over + and + is distributive over ·, i.e.,
for all elements a, b, c in B:

a · (b + c) = (a · b) + (a · c), and a + (b · c) = (a + b) · (a + c). (5)

Identity elements: For all a in B:

a + 0 = a and a · 1 = a. (6)

Complement: To any element a in B there exists an element a in B such that

a + a = 1 and a · a = 0. (7)

The operations “+” (boolean “addition”), “·” (boolean “multiplication”) and “(.)”
(boolean complementation) are known as boolean operations. The set B is called
the universe or the carrier. The elements 0 and 1 are called the zero and unit
elements of B, respectively.

A Boolean algebra is called finite if its universe is a finite set. Although
Boolean algebras are quintuples, it is customary to refer to a Boolean algebra
by its carrier.

Example 5. The following structures are most popular Boolean algebras:

1. Two-value (or binary) Boolean algebra B2 = ({0, 1},+, ·, 0, 1) is the smallest,
but the most important, model of general Boolean algebra. It has only two
elements, 0 and 1. The binary operations + and · and the unary operation
¬ are defined as follows:

x y x + y x · y
0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

x ¬x
0 1
1 0

2. The power set of any given set S forms a Boolean algebra with the two
operations + := ∪ (union) and · := ∩ (intersection). The smallest element 0
is the empty set and the largest element 1 is the set S itself.

3. The set of all subsets of S that are either finite or cofinite is a Boolean
algebra.
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Fig. 4. The Boolean algebra of subsets

3.2 Some Properties of Boolean Algebras

Let us mention some well-known properties of Boolean algebras that are useful
for further consideration [16].

Below we list some identities that are valid for any elements x, y, z of an
arbitrary Boolean algebra B = (B,+, ·, 0, 1).

Associative law:

(x + y) + z = x + (y + z) and (x · y) · z = x · (y · z) (8)

Idempotence:
x + x = x and x · x = x (9)

Operations with 0 and 1:

x + 1 = 1 and x · 0 = 0 (10)

Absorption laws:

(y · x) + x = x and (y + x) · x = x (11)

Involution:

(x) = x (12)

DeMorgan laws:

(x + y) = x · y and (x · y) = x + y (13)

Consensus laws:

(x + y) · (x + z) · (y + z) = (x + y) · (x + z) and (14)
(x · y) + (x · z) + (y · z) = (x · y) + (x · z) (15)

Duality principle: Any algebraic equality derived from the axioms of Boolean
algebra remains true when the operations + and · are interchanged and the
identity elements 0 and 1 are interchanged. For example, x + 1 = 1 and
x · 0 = 0 are dual equations. Because of the duality principle, for any given
theorem we immediately get also its dual.
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The proofs of those properties can be derived from axioms in Definition 4.
For example, the absorption law can be proved as follows:

(y · x) + x = (y · x) + (x · 1) (Identity)
= (y · x) + (1 · x) (Commutative)
= (y + 1) · x (Distributive)
= 1 · x (Operations with 0 and 1)
= x (Identity)

It is not necessary to provide a separate proof for the dual because of the principle
of duality.

Let us define for every Boolean algebra B = (B,+, ·, 0, 1) a relation ”≤” on
B by setting

x ≤ y iff x = x · y
One can show that this relation is reflexive, antisymmetric and transitive, there-
fore “≤” is a partial order. Furthermore, in this relation, x+ y is the least upper
bound of x and y and x·y is the greatest lower bound of x and y. These properties
indicate that every Boolean algebra is also a bounded lattice.

Another well-known results are related to the Stone representation theorem
for Boolean algebras. It has been shown in [152] that every Boolean algebra is
isomorphic to the algebra of clopen (i.e., simultaneously closed and open) subsets
of its Stone space. Due to the properties of Stone space for finite algebras, this
result means that every finite Boolean algebra is isomorphic to the Boolean
algebra of subsets of some finite set S.

3.3 Boolean Expressions

Statements in Boolean algebras are represented by boolean expressions which can
be defined inductively, starting with constants, variables and three elementary
operations as building blocks.

Definition 5. Given a Boolean algebra B, the set of boolean expressions (or
boolean formulas) on the set of n symbols {x1, x2, . . . , xn} is defined by the fol-
lowing rules:

(1) The elements of B are boolean expressions;
(2) The symbols x1, x2, . . . , xn are boolean expressions;
(3) If φ and ψ are boolean expressions, then (φ) + (ψ), (φ) · (ψ) and (φ) are

boolean expressions;
(4) A string is a boolean expression if and only if it is formed by applying a

finite number of rules (1), (2) and (3).

By other words, boolean expressions involve constants, variables, boolean oper-
ations and corresponding parentheses. The notation φ(x1, . . . , xn) denotes that
φ is a boolean expression over {x1, . . . , xn}.

As in ordinary algebra, we may omit the symbol “·” in boolean expressions,
except the places where emphasis is desired. Also we may reduce the number
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of parentheses in a boolean expression by assuming that multiplication “·” are
performed before addition and by removing some unnecessary parentheses. For
example, the well-formed boolean expression ((a) · (x1)) + ((b) · ((x2))) can be
simplified into more friendly form: ax1 + bx2.

The discussion so far was related only to the syntax of boolean expressions,
i.e., rules for the formation of string of symbols. Sometimes, instead of using
the notion of sum and product, it is more convenient to call boolean expressions
(φ)+ (ψ) and (φ) · (ψ) the disjunction and the conjunction, respectively. We will
denote boolean expressions by Greek letters like ψ, φ, ζ, etc.

3.4 Boolean Functions

Every boolean expression ψ(x1, . . . , xn) can be interpreted as a definition of an
n-ary boolean operation, i.e., a mapping

fB
ψ : Bn → B

where B is an arbitrary Boolean algebra. The mapping fB
ψ can be defined by the

composition: for every point (α1, . . . , αn) ∈ Bn, the value of fB
ψ (α1, . . . , αn) is

obtained by recursively applying Definition 5 to the expression ψ.

Definition 6. An n-variable mapping f : Bn → B is called a Boolean function
if and only if it can be expressed by a boolean expression.

Without use of the notion of boolean expressions, n-variable Boolean functions
can be also defined by the following rules:

1. For any b ∈ B, the constant function, defined by

f(x1, . . . , xn) = b for all x1, . . . , xn ∈ B

is an n-variable Boolean function;
2. For any i ∈ {1, . . . , n}, the ith projection function, defined by

pi(x1, . . . , xn) = xi for all x1, . . . , xn ∈ B

is an n-variable Boolean function;
3. If f and g are n-variable Boolean functions, then n-variable Boolean func-

tions are the functions f + g, fg and f , which are defined by

(a) (f + g)(x1, . . . , xn) =f(x1, . . . , xn) + g(x1, . . . , xn)
(b) (fg)(x1, . . . , xn) =f(x1, . . . , xn) · g(x1, . . . , xn)

(c) (f)(x1, . . . , xn) =f(x1, . . . , xn)

for all x1, . . . , xn ∈ B.
4. Only functions which can be defined by finitely many applications of rules

1., 2. and 3. are n-variable Boolean functions.
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Therefore, n-variable Boolean functions establish a smallest set of mappings
f : Bn → B containing constant functions, projection functions, and close under
sum, product and complementary operations.

It is important to understand that every Boolean function can be represented
by numerous boolean expressions, whereas every boolean expression represents
a unique function. As a matter of fact, for a given finite Boolean algebra B,
the number of n-variables Boolean functions is bounded by |B||B|n , whereas the
number of n-variable boolean expressions is infinite. These remarks motivate the
distinction that we draw between functions and expressions. We say that two
boolean expressions φ and ψ are semantically equivalent if they represent the
same Boolean function over a Boolean algebra B. When this is the case, we write
φ =B ψ.

3.5 Representations of Boolean Functions

An important task in many applications of Boolean algebra is to select a “good”
formula, with respect to a pre-defined criterion, to represent a Boolean function.

The simplest, most elementary method to represent a Boolean function over
a finite Boolean algebra B is to provide its function-table, i.e., to give a complete
list of all points in boolean hypercube Bn together with the value of the function
in each point. If B has k elements, then the number of rows in the function-
table of an n-variable Boolean function is kn. We will show that every Boolean
function over a finite Boolean algebra can be represented in a more compact
way.

The following fact, called Shannon’s expansion theorem [135], is a fundamental
for many computations with Boolean functions.

Theorem 1 (Shannon’s expansion theorem). If f : Bn → B is a Boolean
function, then

f(x1, . . . , xn−1, xn) = xnf(x1, . . . , xn−1, 1) + xnf(x1, . . . , xn−1, 0)

for all (x1, . . . , xn−1, xn) in Bn.

The proof of this fact follows from the recursive definition of Boolean functions.
For example, using expansion theorem, any 3-variable Boolean function (over an
arbitrary Boolean algebra) can be expanded as follows:

f(x1, x2, x3) =f(0, 0, 0)x1x2x3 + f(0, 0, 1)x1x2x3

f(0, 1, 0)x1x2x3 + f(0, 1, 1)x1x2x3

f(1, 0, 0)x1x2x3 + f(1, 0, 1)x1x2x3

f(1, 1, 0)x1x2x3 + f(1, 1, 1)x1x2x3

For our convenience, let us introduce the notation xa for x ∈ B and a ∈ {0, 1},
where

x0 = x, x1 = x.
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For any sequence b = (b1, b2, . . . , bn) ∈ {0, 1}n and any vector of boolean vari-
ables X = (x1, x2, . . . , xn) we define the minterm of X by

mb(X) = Xb = xb1
1 xb2

2 . . . xbn
n

and the maxterm of X by

sb(X) = mb(X) = xb1
1 + xb2

2 + · · · + xbn
n .

This notation enables us to formulate the following characterization of Boolean
functions.

Theorem 2 (minterm canonical form). A function f : Bn → B is a Boolean
function if and only if it can be expressed in the minterm canonical form:

f(X) =
∑

b∈{0,1}n

f(b)Xb (16)

The proof of this result follows from Shannon’s expansion theorem. For any
b = (b1, . . . , bn) ∈ {0, 1}n, the value f(b) ∈ B is called the discriminant of the
function f .

Theorem 2 indicates that any Boolean function is completely defined by its
discriminants. The minterms, which are independent of f , are only standardized
functional building blocks. Therefore, an n-variable Boolean function can be
represented by 2n rows, corresponding to all 0, 1 assignments of arguments, of
its function-table. This sub-table of all 0, 1 assignments is called the truth table.

Example 6. Let us consider a Boolean function f : B2 → B defined over B =
({0, 1, a, a},+, ·, 0, 1) by the formula ψ(x, y) = ax + ay. The function-table of
this Boolean function should contain 16 rows. Table 2 shows the corresponding
truth-table that contains only 4 rows. Thus, the minterm canonical form of this
function is represented by

f(x, y) = axy + xy + axy.

Table 2. Truth-table for ψ(x, y) = ax + ay

x y f(x, y)

0 0 a
0 1 0
1 0 1
1 1 a
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3.6 Binary Boolean Algebra

In this paper we concentrate on applications of the binary Boolean algebra only.
Let us show that the binary Boolean algebra plays a crucial role for the verifi-
cation problem.

A statement involving constants and arguments x1, . . . , xn is called an identity
in a Boolean algebra B if and only if it is valid for all substitutions of arguments
on Bn. The problem is to verify whether an identity is valid in all Boolean
algebras.

One of verification methods is based on searching for a proof of the identity
by repeated use of axioms (2.1)–(2.4) and other properties (2.5)–(2.14). The
other method is based on Theorem 2, which states that any Boolean function is
uniquely determined by its 0, 1 assignments of variables. Therefore, any identity
can be verified by all 0, 1 substitutions of arguments. This result, called the
Löwenheim-Müller Verification Theorem [128],[16], can be formulated as follows:

Theorem 3 (Löwenheim-Müller Verification Theorem). An identity
expressed by Boolean expressions is valid in all Boolean algebras if and only if it
is valid in the binary Boolean algebra (which can always be checked by a trivial
brute force algorithm using truth tables).

For example, DeMorgan laws can be verified by checking in the binary Boolean
algebra as it is shown in Table 3.

Table 3. A proof of DeMorgan law by using truth-table. Two last columns are the
same, therefore (x + y) = x · y.

x y x + y (x + y)

0 0 0 1
0 1 1 0
1 0 1 0
1 1 1 0

x y x y x · y
0 0 1 1 1
0 1 1 0 0
1 0 0 1 0
1 1 0 0 0

Binary Boolean algebra has also applications in propositional calculus, inter-
preting 0 as false, 1 as true, + as logical OR (disjunction), · as logical AND
(conjunction), and (.) as logical NOT (complementation, negation).

Any mapping
f : {0, 1}n → {0, 1}

is called an n-variable switching function. Some properties of switching functions
are listed below:

– The function-table of any switching function is the same as its truth-table.
– Since there are 2n rows in the truth-table of any Boolean function over n

variables, therefore the number of n-variable switching functions is equal to
22n

.
– Every switching function is a Boolean function.
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3.7 Some Classes of Boolean Expressions, Normal Forms

Expressions in binary Boolean algebras are quite specific, because almost all
of them are constant–free (excepts the two constant expressions 0 and 1). Let
us recall the definitions of some common subclasses of boolean expressions like
literals, terms, clauses, CNF and DNF that will be used later in this paper.

Boolean expressions are formed from letters, i.e., constants and variables using
boolean operations like conjunction, disjunction and complementation.

– A literal is a letter or its complement.
– A term is either 1 (the unit element), a single literal, or a conjunction of

literals in which no letter appears more than once. Some example terms are
x1x3 and x1x2x4. The size of a term is the number of literals it contains.
The examples are of sizes 2 and 3, respectively. A monomial is a Boolean
function that can be expressed by a term. It is easy to show that there are
exactly 3n possible terms over n variables.

– An clause is either 0 (the zero element), a single literal, or a conjunction of
literals in which no letter appears more than once. Some example clauses
are x3 + x5 + x6 and x1 + x4. The size of a term is the number of literals
it contains. The examples are of sizes 2 and 3, respectively. There are 3n

possible clauses. If f can be represented by a term, then (by De Morgan
laws) f can be represented by a clause, and vice versa. Thus, terms and
clauses are dual of each other.

From psychological experiments it follows that conjunctions of literals seem
easier for humans to learn than disjunctions of literals.

A boolean expression is said to be in disjunctive normal form (DNF) if it is a
disjunction of terms. Some examples in DNF are:

φ1 = x1x2 + x2x3x4;
φ2 = x1x3 + x2x3 + x1x2x3.

A DNF expression is called a “k–term DNF” expression if it is a disjunction of
k terms; it is in the class “k-DNF” if the size of its largest term is k. The examples
above are 2-term and 3-term expressions, respectively. Both expressions are in
the 3-DNF class.

Disjunctive normal form has a dual conjunctive normal form (CNF). A Boo-
lean function is said to be in CNF if it can be written as a conjunction of clauses.
An example in CNF is:

f = (x1 + x2)(x2 + x3 + x4).

A CNF expression is called a kclause CNF expression if it is a conjunction of k
clauses; it is in the class kCNF if the size of its largest clause is k. The example
is a 2clause expression in 3CNF.

Any Boolean function can be represented in both CNF and DNF. One of
possible DNF representations of a Boolean function implies from Theorem 2. In
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case of the binary Boolean algebra, the minterm canonical form of a switching
function is represented by

f (X) =
∑

b∈f−1(1)

mb (X) .

The dual representation of minterm canonical form is called the maxterm canon-
ical form and it is written as follows:

f (X) =
∏

a∈f−1(0)

sa (x)

For example, let a switching function f be given in the form of a truth table
represented in Table 4.

The minterm and maxterm canonical forms of this function are as follow:

φ1 = xyz + xyz + xyz + xyz

φ2 = (x + y + z)(x + y + z)(x + y + z)(x + y + z)

Table 4. Example of switching function

x y z f

0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 1
0 0 1 0
1 0 1 1
0 1 1 1
1 1 1 1

3.8 Implicants and Prime Implicants

Given a function f and a term t, we define the quotient of f with respect to t,
denoted by f/t, to be the function formed from f by imposing the constraint
t = 1. For example, let a Boolean function f be given by

f(x1, x2, x3, x4) = x1x2x4 + x2x3x4 + x1x2x4.

The quotient of f with respect to x1x3 is

f/x1x3 = f(1, x2, 0, x4) = x2x4 + x2x4.

It is clear that the function f/t can be represented by a formula that does not
involve any variable appearing in t. Let us define two basic notions in Boolean
function theory called implicant and prime implicant.
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Definition 7. A term t is an implicant of a function f if f/t = 1. An implicant
t is a prime implicant of f if the term t′ formed by taking any literal out of t
is no longer an implicant of f (the prime implicant cannot be “divided” by any
term and remain an implicant).

Let us observe that each term in a DNF expression of a function is an implicant
because it “implies” the function (if the term has value 1, so does the DNF
expression).

In a general Boolean algebra, for two Boolean functions h and g we write
h 0 g if and only if the identity hg = 0 is satisfied. This property can be verified
by checking whether h(X)g(X) = 0 for any zero-one vector X = (α1, . . . , αn) ∈
{0, 1}n. A term t is an implicant of a function f if and only if t 0 f .

Thus, both x2x3 and x1x3 are prime implicants of f = x2x3+x1x3+x2x1x3+
x1x2x3, but x2x1x3 is not.

The relationship between implicants and prime implicants can be geometri-
cally illustrated using the cube representation for Boolean functions. To repre-
sent an n-variable Boolean function we need an n-dimensional hypercube with
2n vertices corresponding to 2n zero-one vectors in {0, 1}n. In fact, cube repre-
sentation of a Boolean function is a regular graph having 2n vertices with degree
n− 1 each.

Given a Boolean function f and a term t. Let C = (V,E) be the cube repre-
sentation of f . Then the subgraph C|t = (Vt,Et) generated by

Vt = {x ∈ {0, 1}n : t(x) = 1}
is a surface of C and it is the cube representation of the quotient f/t. It is clear
that C|t is a (n − k)-dimensional surface where k is the number of literals in t.
The term t is an implicant if and only if the surface C|t contains the vertices
having value 1 only.

For example, the illustration of function

f = x2x3 + x1x3 + x2x1x3 + x1x2x3

and the cube representations of two quotients f/x2 and f/x1x3 are shown in
Fig. 5. Vertices having value 1 are labeled by solid circles, and vertices having
value 0 are labeled by hollow circles.

The function, written as the disjunction of some terms, corresponds to the
union of all the vertices belonging to all of the surfaces. The function can be
written as a disjunction of a set of implicants if and only if the corresponding
surfaces create a set covering the set of truth values of f .

In this example, the term x2 is not an implicant because C|x2 contains a
vertex having value 0 (i.e., f/x2(011) = 0). In this way we can “see” only 7
implicants of the function f :

x1x2x3, x1x2x3, x1x2x3, x1x2x3, x2x3, x1x3, x1x2

the function f can be represented in various forms, e.g.,

f = x1x3 + x1x2

= x1x2x3 + x2x3 + x1x2x3
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Fig. 5. An illustration of f = x2x3 + x1x3 + x2x1x3 + x1x2x3. Vertices having value 1
are labeled by solid circles.

Geometrically, an implicant is prime if and only if its corresponding surface
is the largest dimensional surface that includes all of its vertices and no other
vertices having value 0. In the previous example only x2x3, x1x3, x1x2 are prime
implicants.

4 Boolean Reasoning and Approximate Boolean
Reasoning

As Boolean algebra plays a fundamental role in computer science, the boolean
reasoning approach is a crucial methodology for problem solving in Artificial
Intelligence. For more details on this topic, we refer the reader to Chang and
Lee [19], Gallaire and Minker [34], Loveland [65], Kowalski [59], Hayes-Roth,
Waterman and Lenat [46], Jeroslow [51], Anthony and Biggs [6].

Boolean reasoning approach is a general framework for solving many complex
decision or optimization problems. We recall the standard Boolean reasoning
approach called the syllogistic reasoning which was described by Brown in [16].
Next, we describe the famous application of Boolean reasoning in planning prob-
lem. This elegant method, called SAT-planning was proposed by Henry Kautz
and Bart Selman [53], [54]. We also present the general framework of approximate
Boolean reasoning methodology which is the main subject of this contribution.
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4.1 Boolean Reasoning Methodology

The greatest idea of Boole’s algebraic approach to logic was to reduce the pro-
cesses of reasoning to processes of calculation. In Boolean algebras, a system of
logical equations can be transformed to a single equivalent boolean equation.

Boole and other 19th-century logicians based their symbolic reasoning on an
equation of 0-normal form, i.e.,

f(x1, x2, . . . , xn) = 0.

Blake [12] showed that the consequents of this equation are directly derived
from the prime implicants of f . Thus the representation of f as a disjunction of
all its prime implicants is called the Blake Canonical Form of a Boolean function
f and denoted by BCF (f), i.e.,

BCF (f) = t1 + t2 + · · · + tk,

where {t1, . . . , tk} is the collection of all prime implicants of the function f . This
observation enables to develop an interesting Boolean reasoning method called
the syllogistic reasoning that extract conclusions from a collection of boolean
data (see Example 7). Quine [121], citequine1952, [122] also appreciated the
importance of the concept of prime implicants in his research related to the
problem of minimizing the complexity of boolean formulas.

The main steps of Boolean reasoning methodology to the problem solving are
presented in Fig. 6.

1. Modeling: Represent the problem by a collection of boolean equations.
The idea is to represent constraints and facts in the clausal form.

2. Reduction: Condense the equations into a problem over a single boolean
equation of form

f(x1, x2, . . . , xn) = 0 (17)

(or, dually, f = 1).
3. Development: Generate a set of all or some prime implicants of f , de-

pending on the formulation of the problem.
4. Reasoning: Apply a sequence of reasoning to solve the problem.

Fig. 6. The Boolean reasoning methodology

Analogically to symbolic approaches in other algebras, Step 1 is performed
by introducing some variables and describing the problem in the language of
Boolean algebra. After that, obtained description of the problem is converted
into boolean equations using following laws in Boolean algebra theory:
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a ≤ b ⇔ ab = 0

a ≤ b ≤ c ⇔ ab + bc = 0

a = b ⇔ ab + ab = 0
a = 0 and b = 0 ⇔ a + b = 0
a = 1 and b = 1 ⇔ ab = 1

where a, b, c are elements of a Boolean algebra B.
Steps 2 and 3 are independent of the problem to be solved and are more or

less automated. In Step 2, three types of problems over boolean equation are
considered:

– Search for all solutions (all prime implicants) of Eqn. (17);
– (Sat) Check whether any solution of (17) exists;
– Search for the shortest prime implicant of (17);

The complexity of Step 4 depends on the problem and the encoding method
in Step 1. Let us illustrate the Boolean reasoning approach by the following
examples.

4.1.1 Syllogistic Reasoning
The following example of syllogistic reasoning was considered in [16]:

Example 7. Consider the following logical puzzle:

Problem: Four friends Alice, Ben, Charlie, David are considering going
to a party. The following social constraints hold:
– If Alice goes than Ben will not go and Charlie will;
– If Ben and David go, then either Alice or Charlie (but not both) will

go;
– If Charlie goes and Ben does not, then David will go but Alice will

not.

First, to apply the Boolean reasoning approach to this problem, we have to
introduce some variables as follows:

A : Alice will go
B : Ben will go
C : Charlie will go
D : David will go

1. Problem modeling:

A =⇒ ¬B ∧ C � A(B + C) = 0

B ∧D =⇒ (A ∧ ¬C) ∨ (C ∧ ¬A) � BD(AC + AC) = 0

C ∧ ¬B =⇒ D ∧ ¬A � BC(A + D) = 0
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2. After reduction:

f = A(B + C) + BD(AC + AC) + BC(A + D) = 0

3. Development: The function f has three prime implicants: BCD,BCD,A.
Therefore, the equation, after transformation to the Blake canonical form,
is rewritten as follows:

f = BCD + BCD + A = 0

Solutions of this equation are derived from prime implicants, i.e.,

f = 0 ⇔

⎧⎪⎨⎪⎩
BCD = 0
BCD = 0
A = 0

4. Reasoning: The Blake’s reasoning method was based on clausal form. The
idea is based on the fact that any equation of form

x1 . . . xny1 . . . ym = 0 (18)

can be transformed to the equivalent propositional formula in the clausal
form

x1 · · · · · xn =⇒ y1 ∨ · · · ∨ ym (19)

Thus, given information of the problem is equivalent to the following facts:

B ∧D −→ C “if Ben and David go then Charlie will”
C −→ B ∨D “if Charlie goes then Ben or David will go”
A −→ 0 “Alice will not go”

The obtained facts can be treated as an input to the automated theorem
proving systems. E.g., one can show that “nobody will go alone”.

4.1.2 Application of Boolean Reasoning Approach in AI
Another application of Boolean reasoning approach is related to the planning
problem. Generally, planning is encoded as a synthesis problem; given an initial
state, a desired final condition and some possible operators that can be used
to change state, a planning algorithm will output a sequence of actions which
achieves the final condition. Each action is a full instantiation of the parameters
of an operator. This sequence of actions is called a plan.

Henry Kautz and Bart Selman [53], [54] proposed a planning method which is
also known as “satisfiability planning” (or Sat planning) since it is based on the
satisfiability problem. In this method, the specification of the studied problem
is encoded by a Boolean function in such a way that the encoding function is
satisfiable if and only if there exists a correct plan for the given specification.
Let us illustrate this method by the famous “blocks world” problem.

Example 8 (Blocks world planning problem). One of the most famous plan-
ning domains is known as the blocks world. This domain consists of a set of
cube-shaped blocks sitting on a table. The blocks can be stacked, but only one
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optimization problem π

Boolean function Fπ

prime implicants f1, f2, . . . , fk of Fπ

solutions R1, R2, . . . , Rk of π

Encoding process

Decoding process

Heuristics for prime implicant problems

Fig. 7. The Boolean reasoning scheme for optimization problems

block can fit directly on top of another. A robot arm can pick up a block and
move it to another position, either on the table or on top of another block. The
arm can pick up only one block at a time, so it cannot pick up a block that has
another one on it. The goal will always be to build one or more stacks of blocks,
specified in terms of what blocks are on top of what other blocks. For example,
Fig. 8 presents a problem, where a goal is to get block E on C and block D on B.

A

B

C

D

E

AC

E

B

D

Fig. 8. An example of blocks world planning problem. The initial situation is presented
in the left and the final situation is presented in the right.

The goal is to produce a set of boolean variables and a set of rules that they
have to obey. In the blocks–world problem, all following statements are boolean
variables:
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– “on(x, y, i)” means that block x is on block y at time i;
– “clear(x, i)” means that there is room on top of block x at time i;
– “move(x, y, z, i)” means that block x is moved from block y to block z be-

tween i and i + 1.

The encoding formula is a conjunction of clauses. There are four different parts
of the plan that must be converted by hand into axiom schemas:

Initial state: the state that is assumed to hold at time 1;
Goal condition: holds at time n+1 where n is the expected number of actions

required to achieve the plan;
For each operator: two families of axioms are defined:

– The effect axioms are asserting that an operator which executes at time
i implies its preconditions at time i and its effects at time i + 1.

– The frame axioms state that anything that holds at time i and is not
changed by the effects must also hold at time i + 1.

Exclusion axioms: these axioms are denoted at-least-one (ALO) and at-most-
one (AMO), and are used to prevent the problem of actions that have con-
flicting preconditions or effects executing simultaneously.

For the aforementioned blocks-world example these axiom schemas might be:

initial state: on(C,B, 1) ∧ on(B,A, 1) ∧ on(A, table, 1) ∧ clear(C, 1) ∧
on(E, D, 1) ∧ on(D, table, 1) ∧ clear(E, 1)

goal condition: on(A, table, 6) ∧ on(B, table, 6) ∧ on(C, table, 6) ∧
on(E, C, 6) ∧ on(D,B, 6) ∧ clear(A, 6) ∧ clear(D, 6) ∧
clear(E, 6)

effect axiom
schemas:

For the move operator:

preconditions:
∀x,y,z,imove(x, y, z, i) =⇒ clear(x, i) ∧ on(x, y, i) ∧
clear(z, i)

effects:
∀x,y,z,imove(x, y, z, i) =⇒ on(x, z, i + 1) ∧ clear(y, i +
1) ∧ ¬on(x, y, i + 1) ∧ ¬clear(z, i + 1)

frame axiom
schemas

For the move operator:

1. ∀w,x,y,z,imove(x, y, z, i) ∧ w �= y ∧ w �= z ∧ clear(w, i)
=⇒ clear(w, i + 1)

2. ∀v,w,x,y,z,imove(x, y, z, i)∧v �= x∧w �= x∧w �= y∧w �=
z ∧ on(v, w, i) =⇒ on(v, w, i + 1)

exclusion axiom
schemas:

Exactly one action occurs at each time step:

AMO: ∀x,x′,y,y′,z,z′,i(x �= x′ ∨ y �= y′ ∨ z �= z′) =⇒
¬move(x, y, z, i) ∨ ¬move(x′, y′, z′, i)

ALO: ∀i∃x,y,zmove(x, y, z, i).
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The number of clauses produced by this schema is tk6, where t is the number
of time steps and k is the number of blocks. For a trivial problem with 2 time
steps and 2 blocks, this schema derives 128 clauses.

4.1.3 Complexity of Prime Implicant Problems
Calculating a set of prime implicants is the most time–consuming step in Boolean
reasoning schema. It is known that there are n–variable Boolean functions with
Ω(3n/n) prime implicants (see, e.g., [18]) and the maximal number of prime
implicants of n–variable Boolean functions does not exceed O(3n/

√
n). Thus

many problems related to calculation of prime implicants are hard [37].
In the complexity theory, the most famous problem connected with Boolean

functions is the satisfiability problem (Sat). It is based on deciding whether
there exists an evaluation of variables that satisfies a given Boolean formula. In
other words, the problem is related to the boolean equation f(x1, . . . , xn) = 1
and the existence of its solution.

Sat is the first decision problem which has been proved to be NP–complete
(the Cook’s theorem). This important result is used to prove the NP–hardness
of many other problems by showing the polynomial transformation of Sat to
the studied problem.

The relationship between Sat and prime implicants is obvious, a valid formula
has the empty monomial 0 as its only prime implicant. An unsatisfiable formula
has no prime implicants at all. In general, a formula φ has a prime implicant if
and only if φ is satisfiable. Therefore, the question of whether a formula has a
prime implicant is NP–complete, and it is in L (logarithmic space) for monotone
formulas.

Sat: Satisfiability problem
input: A boolean formula φ of n variables.
question: Does φ have a prime implicant?

Let us consider the problem of checking whether a term is a prime implicant
of a Boolean function.

IsPrimi:
input: A boolean formula φ and a term t.
question: Is t a prime implicant of φ?

It has been shown that the complexity of IsPrimi is intermediate between
NP∪coNP and

∑p
2. Another problem that is very useful in the Boolean reasoning

approach relates to the size of prime implicants.

PrimiSize:
input: A boolean formula φ of n variables, an integer k.
question: Does φ have a prime implicant consisting of at most k vari-

ables?

This problem was shown to be
∑p

2–complete [153].
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4.1.4 Monotone Boolean Functions
A boolean function φ : {0, 1}n → {0, 1} is called “monotone” if

∀x,y∈{0,1}n(x ≤ y) ⇒ (φ(x) ≤ φ(y)).

It has been shown that monotone functions can be represented by a boolean
expression without negations. Thus, a monotone expression is an expression
without negation.

One can show that if φ is a positive boolean formula of n variables x1, . . . , xn,
then for each variable xi

φ(x1, . . . , xn) = xi · φ/xi + φ/xi, (20)

where

φ/xi = φ(x1, . . . , xi−1, 1, xi+1, . . . , xn) and
φ/xi = φ(x1, . . . , xi−1, 0, xi+1, . . . , xn)

are obtained from φ by replacing xi by constants 1 and 0, respectively. One can
prove Equation (20) by the truth–table method. Let us consider two cases:

– if xi = 0 then

xi · φ/xi + φ/xi = φ/xi

= φ(x1, . . . , 0, . . . , xn);

– if xi = 1 then

xi · φ/xi + φ/xi = φ/xi + φ/xi

= φ/xi (monotonicity).

The last identity holds because φ is monotone, hence φ/xi ≥ φ/xi. Therefore,
Equation (20) is valid for each x1, . . . , xn ∈ {0, 1}n.

A monotone formula φ in disjunctive normal form is irredundant if and only if
no term of φ covers another term of φ. For a monotone formula, the disjunction of
all its prime implicants yields an equivalent monotone DNF. On the other hand,
every prime implicant must appear in every equivalent DNF for a monotone
formula. Hence, the smallest DNF for a monotone formula is unique and equals
the disjunction of all its prime implicants. This is not the case for non-monotone
formulas, where the smallest DNF is a subset of the set of all prime implicants.
It is NP-hard to select the right prime implicants [Mas79]. See also [Czo99] for
an overview on the complexity of calculating DNFs.

Many calculations of prime implicants for monotone boolean formulas are
much easier than for general formulas. For the example of IsPrimi problem, it
can be checked in logarithmic space whether an assignment corresponding to
the term satisfies the formula. The PrimiSize problem for monotone formulas
is NP-complete only. Table 5 summarizes the complexity of discussed problems.
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Table 5. Computational complexity of some prime implicant problems

Problem Arbitrary formula Monotone formula

Sat NP-complete L

IsPrimi between NP ∪ coNP and
∑p

2 L

PrimiSize
∑p

2-complete NP-complete

This result implies that the problem of searching for prime implicant of min-
imal size (even for monotone formulas) is NP–hard.

MinPrimimon: minimal prime implicant of monotone formulas
input: Monotone boolean formula φ of n variables.
output: A prime implicant of minimal size.

We have mentioned that Sat plays a fundamental role in the computation
theory, as it is used to prove NP–hardness of other problems. From practical
point of view, any Sat-solver (a heuristic algorithm for Sat) can be used to
design heuristic solutions for other problems in the class NP. Therefore, instead
of solving a couple of hard problems, the main effort may be limited to create
efficient heuristics for the Sat problem.

Every boolean formula can be transformed into a monotone boolean formula
such that satisfying assignments of the basic formula are similar to prime impli-
cants of the monotone formula. The transformation is constructed as follows:

Let φ be a boolean formula in negation normal form 4 (NNF) with n variables
x1, . . . , xn.

– Let r(φ) denote the formula obtained by replacing all appearances of xi in
φ by the new variable yi (for i = 1, 2, . . . , n).

– Let c(φ) denote the conjunction
∏n

i=1(xi + yi).

One can show that can φ is satisfied if and only if monotone boolean formula
r(φ) · c(φ) has a prime implicant consisting of at most n variables. The main
idea is to prove that a vector a = (a1, . . . , an) ∈ {0, 1}n is a satisfied evaluation
for φ (i.e., fφ(a) = 1) if and only if the term

ta =
∏

ai=1

xi ·
∏

ai=0

yi

is a prime implicant of r(φ) · c(φ).
Every heuristic algorithm A for MinPrimimon problem can be used to solve

(in approximate way) the Sat problem for an arbitrary formula φ as follows:

1. calculate the minimal prime implicant t of the monotone formula r(φ) · c(φ);
2. return the answer “YES” if and only if t consists of at most n variables.

4 In the negation normal form, negations are attached to atomic formulas. Any boolean
formula can be converted into NNF by the recursive using of evolution and DeMorgan
law.
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4.2 Approximate Boolean Reasoning Method

The high computational complexity of prime implicant problems means that
the Boolean reasoning approach is not applicable in many real-world problems,
particularly in data mining, where large amount of data is one of the major
challenges.

The natural approach to managing hard problems is to search for an approxi-
mate instead of an exact or optimal solution. The first attempt might be related
to calculation of prime implicants, as it is the most complex step in the Boolean
reasoning schema. In the next section we describe some well-known approximate
algorithms for prime implicant problems.

Each approximate method is characterized by two parameters: the quality
of approximation and the computation time. Searching for the proper balance
between those parameters is the biggest challenge of modern heuristics. We have
proposed a novel method, called the approximate Boolean reasoning method, to
extend this idea. In the approximate Boolean reasoning approach to problem
solving, not only calculation of prime implicants, but every step in the original
scheme (Fig. 9) is approximately performed to achieve an approximate solution.

– Modeling: Represent the problem Π (or its simplification) by a collec-
tion of Boolean equations.

– Reduction: Condense the equations into an equivalent problem en-
coded by a single boolean equation of the form fΠ(x1, . . . , xn) = 1 or a
simplified problem encoded by an equation f ′

Π = 1.
– Development: Generate an approximate solution of the formulated

problem over fΠ (or f ′
Π).

– Reasoning: Apply an approximate reasoning method to solve the orig-
inal problem.

Fig. 9. General scheme of approximate Boolean reasoning approach
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The general scheme of the approximate Boolean reasoning approach is pre-
sented in Fig. 9.

Since the minimal prime implicant problem is NP–hard, it cannot be
solved (in general case) by exact methods only. It is necessary to create some
heuristics to search for short prime implicants of large and complicated boolean
functions.

Most of the problems in data mining are formulated as optimization problems.
We will show in the next sections many applications of the Boolean reasoning
approach to optimization problem where the minimal prime implicants play a
crucial role.

4.2.1 Heuristics for Prime Implicant Problems
Minimal prime implicants of a given function can be determined from the set
of all its prime implicants. One of the well-known methods was proposed by
Quine-McCluskey [121]. This method is featured by possible exponential time
and space complexity as it is based on using consensus laws to minimalize the
canonical DNF of a function (defined by true points) into the DNF in which
each term is a prime implicant.

DPLL procedures. The close relationship between Sat and MinPrimimon (as
it was described in the previous section) implies the similarity between their
solutions. Let us mention some most important SAT-solvers, i.e., the solving
methods for Sat problem.

The first SAT-solvers, which still remain the most popular ones, are the
Davis-Putnam (DP) [27] and Davis-Logemann-Loveland (DLL) algorithms [26].
These methods are featured by possible exponential space (in case of DP) and
time (in both cases) complexity, therefore they have a limited practical appli-
cability. But compound idea of both methods are very useful; it is known as
DPLL for historical reasons. DPLL is a basic framework for many modern SAT
solvers.

CDLC methods. The DPLL algorithm remained dominant among complete
methods until the introduction of clause learning solvers like GRASP in 1996
[69], Chaff [66], BerkMin [36], Siege [129] and many others. This new method
is a variation of DPLL with two additional techniques called the backtracking
algorithm and the corresponding refutation.

1. The first technique, called “clause learning” and “clause recording”, or just
“learning”, is that, if we actually derive the clauses labeling the search tree,
we can add some of them to the formula. If later in the execution the assign-
ment at some node falsifies one of these clauses, the search below that node
is avoided with possible time savings.

2. The second technique is based on the method called “conflict directed back-
jumping” (CBJ) in the constraint satisfaction literature [118]. The idea is
based on effective recognition of those clauses for which no second recursive
call is necessary.
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Algorithm 1. procedure DPLL( φ, t )
begin

// SAT:

if φ/t is empty then
return SATISFIABLE;

end
// Conflict:

if φ/t contains an empty clause then
return UNSATISFIABLE;

end
// Unit Clause:

if φ/t contains a unit clause {p} then
return DPLL(φ, tp);

end
// Branch:

Let p be a literal from a minimal size clause of φ/t;
if DPLL( φ, tp ) then

return SATISFIABLE;
else

return DPLL( φ, tp);
end

end

Therefore, this class of solvers is sometimes called “conflict driven clause learn-
ing” (CDCL) algorithm.

Max-Sat based methods. Another noticeable method for Sat was proposed by
Selman [132]. The idea is to treat Sat as a version of Max-Sat problem, where
the task is to find an assignment that satisfies the most number of clauses.
Any local search algorithm can be employed to the search space containing all
assignments, and the cost function for a given assignment is set by a number of
unsatisfied clauses.

4.2.2 Searching for Prime Implicants of Monotone Functions
In case of minimal prime implicant for monotone functions, the input boolean
function is assumed to be given in the CNF form, i.e., it is presented as a
conjunction of clauses, e.g.,

ψ = (x1 + x2 + x3)(x2 + x4)(x1 + x3 + x5)(x1 + x5)(x5 + x6)(x1 + x2) (21)

Searching for the minimal prime implicant can be treated as the minimal
hitting set problem, i.e., the problem of searching for minimal set of variables X
such that for every clause of the given formula, at least one of its variables must
occur in X .

Let us recall that every monotone Boolean function can be expanded by a
variable xi as follows (see Eqn. (20)):
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φ(x1, . . . , xn) = xi · φ/xi + φ/xi

= xiφ(x1, . . ., xi−1, 1, xi+1, . . . , xn)+φ(x1, . . . , xi−1, 0, xi+1,. . . , xn)

The basic problem in many existing heuristics for minimal prime implicant
is to evaluate the chance that the variable xi belongs to the minimal prime
implicant of φ. We can do that by defining an evaluation function Eval(xi;φ)
which takes under consideration two formulas φ/xi and φ/xi, i.e.

Eval(xi;φ) = F (φ/xi, φ/xi) (22)

The algorithm should decide either to select the best variable xbest and con-
tinue with φ/xbest or to remove the worst variable xworst and continue with
φ/xworst.

One can apply an idea of DPLL algorithms to solve the minimal prime im-
plicant for monotone formulas. The algorithm of searching for minimal prime
implicant starts from an empty term t, and in each step, it might choose one of
the following actions:

unit clause: If φ/txi degenerates for some variable xi, i.e., φ/txi = 0, then xi

must occur in every prime implicant of φ/t. Such variable is called the core
variable. The core variable can be quickly recognized by checking whether
there exists a unit clause, i.e., a clause that consists of one variable only. If
xi is core variable, then the algorithm should continue with φ/txi;

final step: If there exists variable xi such that φ/txi degenerates, then xi is the
minimal prime implicant of φ/t, the algorithm should return txi as a result
and stop here;

heuristic decision: If none of previous rules cannot be performed, the algo-
rithm should use the evaluation function (Equation (22)) to decide how to
continue the searching process. The decision is related to adding a variable
xi to t and continuing the search with formula φ/txi or rejecting a variable
xj and continuing the search with formula φ/txj .

Let us mention some most popular heuristics that have been proposed for
minimal prime implicant problem for monotone Boolean functions:

1. Greedy algorithm:
This simple method (see [35]) is using the number of unsatisfied clauses as a
heuristic function. In each step, the greedy method selects the variable that
most frequently occurs within clauses of the given function and removes all
those clauses which contain the selected variable. For the function in Eqn.
(21) x1 is the most preferable variable by the greedy algorithm. The result
of greedy algorithm for this function might be x1x4x6, while the minimal
prime implicant is x2x5.

2. Linear programming: The minimal prime implicant can also be resolved
by converting the given function into a system of linear inequations and
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applying the Integer Linear Programming (ILP) approach to this system,
see [115], [68].

Assume that an input monotone boolean formula is given in CNF. The
idea is to associate with each boolean variable xi an integer variable ti. Each
monotone clause xi1 + · · ·+ xik

is replaced by an equivalent inequality:

ti1 + · · ·+ tik
≥ 1

and the whole CNF formula is replaced by a set of inequalities A ·t ≥ b. The
problem is to minimize the number of variables with the value one assigned.
The resulting ILP model is as follows:

min(t1 + t2 + · · · + tn)
s.t. A · t ≥ b

3. Simulated annealing: many optimization problems are resolved by a
Monte-Carlo search method called simulated annealing. In case of minimal
prime implicant problem, the search space consists of all subsets of variables
and the cost function for a given subset X of boolean variables is defined by
two factors: (1) the number of clauses that are uncovered by X , and (2) the
size of X , see [133].

4.2.3 Ten Challenges in Boolean Reasoning
In 1997, Selman et al. [131] present an excellent summary of the state of the
art in propositional (Boolean) reasoning, and sketches challenges for the next 10
years:

SAT problems. Two specific open SAT problems:
Challenge 1 Prove that a hard 700 variable random 3-SAT formula is un-

satisfiable.
Challenge 2 Develop an algorithm that finds a model for the DIMACS

32-bit parity problem.
Proof systems. Are there stronger proof systems than resolution?

Challenge 3 Demonstrate that a propositional proof system more powerful
than resolution can be made practical for satisfiability testing.

Challenge 4 Demonstrate that integer programming can be made practical
for satisfiability testing.

Local search. Can local search be made to work for proving unsatisfiability?
Challenge 5 Design a practical stochastic local search procedure for prov-

ing unsatisfiability.
Challenge 6 Improve stochastic local search on structured problems by

efficiently handling variable dependencies.
Challenge 7 Demonstrate the successful combination of stochastic search

and systematic search techniques, by the creation of a new algorithm
that outperforms the best previous examples of both approaches.
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Encodings. different encodings of the same problem can have vastly different
computational properties.
Challenge 8 Characterize the computational properties of different encod-

ings of a real-world problem domain, and/or give general principles that
hold over a range of domains.

Challenge 9 Find encodings of real-world domains which are robust in the
sense that “near models” are actually “near solutions”.

Challenge 10 Develop a generator for problem instances that have com-
putational properties that are more similar to real-world instances

In the next sections, we present some applications of approximate Boolean
reasoning approach to rough set methods and data mining. We will show that
in many cases, the domain knowledge is very useful for designing effective and
efficient solutions.

5 Application of ABR in Rough Sets

In this section, we recall two famous applications of Boolean reasoning method-
ology in rough set theory. The first is related to the problem of searching for
reducts, i.e., subsets of most informative attributes of a given decision table
or information system. The second application concerns the problem of search-
ing for decision rules which are building units of many rule-based classification
methods.

5.1 Rough Sets and Feature Selection Problem

Feature selection has been an active research area in pattern recognition, statis-
tics, and data mining communities. The main idea of feature selection is to select
a subset of most relevant attributes for classification task, or to eliminate fea-
tures with little or no predictive information. Feature selection can significantly
improve the comprehensibility of the resulting classifier models and often build a
model that generalizes better to unseen objects [63]. Further, it is often the case
that finding the correct subset of predictive features is an important problem in
its own right.

In rough set theory, the feature selection problem is defined in terms of reducts
[111]. We will generalize this notion and show an application of the ABR ap-
proach to this problem.

In general, reducts are minimal subsets (with respect to the set inclusion re-
lation) of attributes which contain a necessary portion of information about the
set of all attributes. The notion of information is as abstractive as the notion
of energy in physics, and we will not able to define it exactly. Instead of ex-
plicit information, we have to define some objective properties for all subsets
of attributes. Such properties can be expressed in different ways, e.g., by logi-
cal formulas or, as in this section, by a monotone evaluation function which is
described as follows.
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For a given information system S = (U,A), the function

μS : P(A) −→ 1+

where P(A) is the power set of A, is called the monotone evaluation function if
the following conditions hold:

1. the value of μS(B) can be computed using information set INF (B) for any
B ⊂ A;

2. for any B,C ⊂ A, if B ⊂ C, then μS(B) ≤ μS(C).

Definition 8 (μ-reduct). Any set B ⊆ A is called the reduct relative to a
monotone evaluation function μ, or briefly μ-reduct, if B is the smallest subset
of attributes that μ(B) = μ(A), i.e., μ(B′) � μ(B) for any proper subset B′ � B.

This definition is general for many different definition of reducts. Let us mention
some well-known types of reducts used in rough set theory.

5.1.1 Basic Types of Reducts in Rough Set Theory
In Sect. 2.3, we have introduced the B-indiscernibility relation (denoted by
INDS(B)) for any subset of attributes B ⊂ A of a given information system
S = (U,A) by

INDS(B) = {(x, y) ∈ U × U : infB(x) = infB(y)}.

Relation INDS(B) is an equivalence relation. Its equivalence classes can be used
to define the lower and upper approximations of concepts in rough set theory
[109], [111].

The complement of indiscernibility relation is called B-discernibility relation
and is denoted by DISCS(B). Hence,

DISCS(B) = U × U − INDS(B)
= {(x, y) ∈ U × U : infB(x) �= infB(y)}
= {(x, y) ∈ U × U : ∃a∈Ba(x) �= a(y)}.

It is easy to show that DISCS(B) is monotone, i.e., for any B,C ⊂ A

B ⊂ C =⇒ DISCS(B) ⊂ DISCS(C).

Intuitively, any reduct (in rough set theory) is a minimal subset of attributes
that preserves the discernibility between information vectors of objects. The
following notions of reducts are often used in rough set theory.

Definition 9 (information reducts). Any minimal subset B of A such that
DISCS(A) = DISCS(B) is called the information reduct (or reduct, for short)
of S. The set of all reducts of a given information system S is denoted by RED(S)
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In the case of decision tables, we are interested in the ability of describing decision
classes by using subsets of condition attributes. This ability can be expressed in
terms of generalized decision function ∂B : U → P(Vdec), where

∂B(x) = {i : ∃x′∈U [(x′IND(B)x) ∧ (d(x′) = i)]}

(see Equation (2) in Sect. 2.3).

Definition 10 (decision-relative reducts). The set of attributes B ⊆ A is
called a relative reduct (or simply a decision reduct) of decision table S if and
only if

– ∂B(x) = ∂A(x) for all object x ∈ U ;
– any proper subset of B does not satisfy the previous condition;

i.e., B is a minimal subset (with respect to the inclusion relation ⊆) of the
attribute set satisfying the property ∀x∈U∂B(x) = ∂A(x).

The set C ⊂ A of attributes is called super-reduct if there exists a reduct B such
that B ⊂ C. One can prove the following theorem:

Theorem 4 (the equivalency of definitions).

1. Information reducts for a given information system S = (U,A) are exactly
those reducts with respect to discernibility function, which is defined for ar-
bitrary subset of attributes B ⊂ A as a number pairs of objects discerned by
attributes from B, i.e.,

disc(B) =
1
2
card(DISCS(B)).

2. Relative reducts for decision tables S = (U,A ∪ {dec}) are exactly those
reducts with respect to relative discernibility function, which is defined by

discdec(B) =
1
2
card (DISCS(B) ∩DISCS({dec})) .

The relative discernibility function returns the number of pairs of objects
from different classes, which are discerned by attributes from B.

Many other types of reducts, e.g., frequency based reducts [145] or entropy
reducts in [146], can be defined by selection of different monotone evaluation
functions.

Example 9. Let us consider the “weather” problem, which is represented by de-
cision table (see Table 6). Objects are described by four conditional attributes
and are divided into 2 classes. Let us consider the first 12 observations. In
this example, U = {1, 2, . . . , 12}, A = {a1, a2, a3, a4}, CLASSno = {1, 2, 6, 8},
CLASSyes = {3, 4, 5, 7, 9, 10, 11, 12}.

The equivalence classes of indiscernibility relation INDS(B) for some sets of
attributes are given in Table 7.
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Table 6. The exemplary “weather” decision table

date outlook temperature humidity windy play

ID a1 a2 a3 a4 dec

1 sunny hot high FALSE no
2 sunny hot high TRUE no
3 overcast hot high FALSE yes
4 rainy mild high FALSE yes
5 rainy cool normal FALSE yes
6 rainy cool normal TRUE no
7 overcast cool normal TRUE yes
8 sunny mild high FALSE no
9 sunny cool normal FALSE yes
10 rainy mild normal FALSE yes
11 sunny mild normal TRUE yes
12 overcast mild high TRUE yes

13 overcast hot normal FALSE yes
14 rainy mild high TRUE no

Table 7. Indiscernibility classes of INDS(B) for some sets of attributes

The set of attributes B Equivalent classes of INDS(B)

B = {a1} {1, 2, 8, 9, 11}, {3, 7, 12}, {4, 5, 6, 10}
B = {a1, a2} {1, 2}, {3}, {4, 10}, {5, 6}, {7}, {8, 11}, {9}, {12}
B = A = {a1, a2, a3, a4} {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}

Table 8. The discernibility function of different subsets of attributes

Attribute sets B discdec(B)

B = ∅ 0
B = {a1} 23
B = {a2} 23
B = {a3} 18
B = {a4} 16
B = {a1, a2} 30
B = {a1, a3} 31
B = {a1, a4} 29
B = {a2, a3} 27
B = {a2, a4} 28
B = {a3, a4} 25
B = {a1, a2, a3} 31
B = {a1, a2, a4} 32
B = {a1, a3, a4} 32
B = {a2, a3, a4} 29
B = {a1, a2, a3, a4} 32
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The values of relative discernibility function discdec(B) for all subsets B ⊂ A
are given in Table 8. One can see that there are two relative reducts for this
table: R1 = {a1, a2, a4} and R2 = {a1, a3, a4}.

5.1.2 Boolean Reasoning Approach for Reduct Problem
There are two problems related to the notion of “reduct”, which have been
intensively explored in rough set theory by many researchers (see, e.g., [7], [50],
[60], [145], [146], [157]. The first problem is related to searching for reducts with
the minimal cardinality called the shortest reduct problem. The second problem
is related to searching for all reducts. It has been shown that the first problem is
NP-hard (see [143]) and second is at least NP-hard. Some heuristics have been
proposed for those problems. Here we present the approach based on Boolean
reasoning as proposed in [143] (see Fig. 10).

Reduct problem −−−−−−−−→ discernibility function fS

�
Optimal reducts π ←−−−−−−−− Prime implicants of fS

Fig. 10. The Boolean reasoning scheme for solving reduct problem

Given a decision table S = (U,A ∪ {dec}), where U = {u1,u2, . . . ,un} and
A = {a1, . . . , ak}. By discernibility matrix of the decision table S we mean the
(n× n) matrix

M(S) = [Mi,j ]
n
ij=1

where Mi,j ⊂ A is the set of attributes discerning ui and uj , i.e.,

Mi,j = {am ∈ A : am(ui) �= am(uj)}. (23)

Let us denote by V ARS = {x1, . . . , xk} a set of boolean variables corresponding
to attributes a1, . . . , ak. For any subset of attributes B ⊂ A, we denote by X(B)
the set of boolean variables corresponding to attributes from B. We will encode
reduct problem as a problem of searching for the corresponding set of variables.

For any two objects ui,uj ∈ U , the boolean clause χui,uj , called discernibility
clause, is defined as follows:

χui,uj (x1, . . . , xk) =

⎧⎨⎩
∑

am∈Mi,j

xm if Mi,j �= ∅

1 if Mi,j = ∅

The objective is to create a boolean function fS such that a set of attributes is a
reduct of S if and only if it corresponds to a prime implicant of fS. This function
is defined as follows:
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1. for information reduct problem:

fS(x1, . . . , xk) =
∏
i�=j

(
χui,uj (x1, . . . , xk)

)
(24)

The function fS was defined by Skowron and Rauszer [143] and it is called
the discernibility function.

2. for relative reduct problem:

fdec
S

(x1, . . . , xk) =
∏

i,j:dec(ui) �=dec(uj)

(
χui,uj (x1, . . . , xk)

)
(25)

The function fdec
S

is called the decision oriented discernibility function.

Reduct problem

Given S = (U,A∪ {d})
where
U = {u1, . . . ,un}, and
A = {a1, . . . , ak};

=⇒

Boolean encoding function:

Variables: V ARS = {x1, . . . , xk}
Discernibility function

fS(x1, . . . , xk) =
∏
i�=j

⎛⎝ ∑
as(ui) �=as(uj)

xs

⎞⎠
Decision oriented discernibility function

fdec
S

=
∏

i,j:dec(ui) �=dec(uj)

⎛⎝ ∑
as(ui) �=as(uj)

xs

⎞⎠
Let us associate with every subset of attributes B ⊂ A an assignment aB ∈

{0, 1}k as follows:

aB = (v1, . . . , vk), where vi = 1 ⇔ ai ∈ B,

i.e., aB is the characteristic vector of B. We have the following propositions:

Proposition 1. For any B ⊂ A the following conditions are equivalent:

1. fS(aB) = 1;
2. disc(B) = disc(A), i.e., B is a super-reduct of S.

Proof:
Assume that aB = (v1, . . . , vk) we have:

fS(aB) = 1 ⇔ ∀ui,uj∈U χui,uj (aB) = 1
⇔ ∀ui,uj∈U∃am∈Mi,j vm = 1
⇔ ∀ui,uj∈U Mi,j �= ∅ =⇒ B ∩Mi,j �= ∅

⇔ disc(B) = disc(A)

�
Now we are ready to show the following theorem:
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Theorem 5. A subset of attributes B is a reduct of S if and only if the term

TX(B) =
∏

ai∈B

xi

is a prime implicant of the discernibility function fS.

Proof: Let us assume that B is a reduct of S. It means that B is the smallest
set of attributes such that disc(B) = disc(A). Using Proposition 1, we have
fS(aB) = 1. We will show that TX(B) is a prime implicant of fS.

To do so, let us assume that TX(B)(a) = 1 for some a ∈ {0, 1}k. Because aB is
the minimal assignment satisfying TX(B), hence aB ≤ a. Consequently we have

1 = fS(aB) ≤ fS(a) ≤ 1

Thus TX(B) ≤ fS, i.e., TX(B) is a implicant of fS.
To prove that TX(B) is prime implicant of fS, we must show that there is no

smaller implicant than TX(B). To do so, let us assume conversely that there is
an implicant T , which is really smaller than TX(B). It means that T = TX(C) for
some subset of attributes C � B. Since TX(C) is implicant of fS, then we have
fS(aC) = 1. This condition is equivalent to disc(C) = disc(A) (see Proposition
1). Hence, we have a contradiction to the assumption that B is a reduct of S.

The proof of the second implication (i.e., TX(B) is prime implicant ⇒ B is
the reduct of S) is very similar and we will omit it. �
One can slightly modify the previous proof to show the following theorem.

Theorem 6. A subset of attributes B is a relative reduct of decision table S if
and only if TX(B) is the prime implicant of the relative discernibility function
fdec

S
.

Example 10. Let us consider again the decision table “weather” presented in
Table 6. This table consists of 4 attributes: a1, a2, a3, a4, hence the set of corre-
sponding boolean variables consists of

V ARS = {x1, x2, x3, x4}
The discernibility matrix is presented in Table 9.

The discernibility matrix can be treated as a board containing n × n boxes.
Noteworthy is the fact that discernibility matrix is symmetrical with respect to
the main diagonal, because Mi,j = Mj,i, and that sorting all objects according
to their decision classes causes a shift off all empty boxes nearby to the main
diagonal. In case of decision table with two decision classes, the discernibility
matrix can be rewritten in a more compact form as shown in Table 10.

The discernibility function is constructed from discernibility matrix by taking
a conjunction of all discernibility clauses. After reducing of all repeated clauses
we have:

f(x1, x2, x3, x4) =(x1)(x1 + x4)(x1 + x2)(x1 + x2 + x3 + x4)(x1 + x2 + x4)
(x2 + x3 + x4)(x1 + x2 + x3)(x4)(x2 + x3)(x2 + x4)
(x1 + x3)(x3 + x4)(x1 + x2 + x4).
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Table 9. Discernibility matrix

M 1 2 3 4 5 6 7 8 9 10 11 12

1 a1 a1, a2 a1, a2,
a3

a1, a2,
a3, a4

a2, a3 a1, a2,
a3

a2, a3,
a4

a1, a2,
a4

2 a1, a4 a1, a2,
a4

a1, a2,
a3, a4

a1, a2,
a3

a2, a3,
a4

a1, a2,
a3, a4

a2, a3 a1, a2

3 a1 a1, a4 a1, a2,
a3, a4

a1, a2

4 a1, a2 a1, a2,
a4

a2, a3,
a4

a1

5 a1, a2,
a3

a1, a2,
a3, a4

a4 a1, a2,
a3

6 a1, a2,
a3, a4

a2, a3,
a4

a4 a1 a1, a4 a2, a4 a1, a2 a1, a2,
a3

7 a1, a2,
a3, a4

a1, a2,
a3

a1 a1, a2,
a3, a4

8 a1, a2 a1 a1, a2,
a3

a1, a2,
a3, a4

a2, a3 a1, a3 a3, a4 a1, a4

9 a2, a3 a2, a3,
a4

a1, a4 a2, a3

10 a1, a2,
a3

a1, a2,
a3, a4

a2, a4 a1, a3

11 a2, a3,
a4

a2, a3 a1, a2 a3, a4

12 a1, a2,
a4

a1, a2 a1, a2,
a3

a1, a4

One can find relative reducts of the decision table by searching for its prime impli-
cants. The straightforward method calculates all prime implicants by translation
to DNF. One can do it as follow:

– remove those clauses that are absorbed by some other clauses (using absorb-
tion rule: p(p + q) ≡ p):

f = (x1)(x4)(x2 + x3)

– Translate f from CNF into DNF

f = x1x4x2 + x1x4x3.

– Every monomial corresponds to a reduct. Thus we have 2 reducts: R1 =
{a1, a2, a4} and R2 = {a1, a3, a4}.

5.2 Approximate Algorithms for Reduct Problem

Every heuristic algorithm for the prime implicant problem can be applied to
the discernibility function to solve the minimal reduct problem. One of such
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Table 10. The compact form of discernibility matrix

M 1 2 6 8

3 a1 a1, a4 a1, a2, a3, a4 a1, a2

4 a1, a2 a1, a2, a4 a2, a3, a4 a1

5 a1, a2, a3 a1, a2, a3, a4 a4 a1, a2, a3

7 a1, a2, a3, a4 a1, a2, a3 a1 a1, a2, a3, a4

9 a2, a3 a2, a3, a4 a1, a4 a2, a3

10 a1, a2, a3 a1, a2, a3, a4 a2, a4 a1, a3

11 a2, a3, a4 a2, a3 a1, a2 a3, a4

12 a1, a2, a4 a1, a2 a1, a2, a3 a1, a4

heuristics was proposed in [143] and was based on the idea of greedy algorithm
(see Sect. 4.2), where each attribute is evaluated by its discernibility measure,
i.e., the number of pairs of objects which are discerned by the attribute, or,
equivalently, the number of its occurrences in the discernibility matrix.

Let us illustrate the idea by using discernibility matrix (Table 10) from the
previous section.

– First we have to calculate the number of occurrences of each attributes in
the discernibility matrix:

eval(a1) = discdec(a1) = 23 eval(a2) = discdec(a2) = 23
eval(a3) = discdec(a3) = 18 eval(a4) = discdec(a4) = 16

Thus a1 and a2 are the two most preferred attributes.
– Assume that we select a1. Now we are taking under consideration only those

cells of the discernibility matrix which are not containing a1. There are 9
such cells only, and the number of occurrences are as the following:

eval(a2) = discdec(a1, a2)− discdec(a1) = 7
eval(a3) = discdec(a1, a3)− discdec(a1) = 7
eval(a4) = discdec(a1, a4)− discdec(a1) = 6

– If this time we select a2, then the are only 2 remaining cells, and, both are
containing a4;

– Therefore, the greedy algorithm returns the set {a1, a2, a4} as a reduct of
sufficiently small size.

There is another reason for choosing a1 and a4, because they are core at-
tributes5. It has been shown that an attribute is a core attribute if and only if
occurs in the discernibility matrix as a singleton [143]. Therefore, core attributes
can be recognized by searching for all single cells of the discernibility matrix.
The pseudo-code of this algorithm is presented in Algorithm 2.
5 An attribute is called core attribute if and only if it occurs in every reduct.
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Algorithm 2. Searching for short reduct
begin

B := ∅;
// Step 1. Initializing B by core attributes

for a ∈ A do
if isCore(a) then

B := B ∪ {a};
end

end
// Step 2. Including attributes to B
repeat

amax := arg max
a∈A−B

discdec(B ∪ {a});

eval(amax) := discdec(B ∪ {amax}) − discdec(B);
if (eval(amax) > 0) then

B := B ∪ {a};
end

until (eval(amax) == 0) OR (B == A) ;
// Step 3. Elimination

for a ∈ B do
if (discdec(B) = discdec(B − {a})) then

B := B − {a};
end

end

end

The reader may have a feeling that the greedy algorithm for reduct problem
has quite a high complexity, because two main operations:

– disc(B) – number of pairs of objects discerned by attributes from B;
– isCore(a) – check whether a is a core attribute;

are defined by the discernibility matrix which is a complex data structure con-
taining O(n2) cells, and each cell can contain up to O(m) attributes, where n
is the number of objects and m is the number of attributes of the given deci-
sion table. This suggests that the two main operations need at least O(mn2)
computational time.

Fortunately, both operations can be performed more efficiently. It has been
shown [101] that both operations can be calculated in time O(mn logn) without
the necessity to store the discernibility matrix. In Sect. 10, we present an effective
implementation of this heuristics that can be applied to large data sets.

5.3 Malicious Decision Tables

In this section, we consider a class of decision tables with maximal number of
reducts. In some sense, such tables are the hardest decision tables for reduct
problems. We are interesting in the structure of such tables and we will present
a solution based on Boolean reasoning approach.
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Let S = (U,A ∪ {d}) be an arbitrary decision table containing m attributes,
i.e., A = {a1, . . . , am}, and n objects, i.e., U = {u1, . . . ,un}, and let M(S) =
[Ci,j ]

n
ij=1 be the discernibility matrix of S.

We denote by RED(S) the set of all relative reducts of decision table S. Let
us recall some properties of the set RED(S):

1. If B1 ∈ RED(S) is a reduct of the system S, then there is no such reduct
B2 ∈ RED(S) that B1 � B2.

2. The elements of RED(S) create an antichain with respect to the inclusion
between subsets of A.

3. If |A| = m is an even positive integer, i.e., m = 2k, then

C = {B ⊂ A : |B| = k} (26)

is the only antichain containing maximal number of subsets of A.
4. If |A| = m is an odd positive integer, i.e., m = 2k + 1, then there are two

antichains containing the maximal number of subsets:

C1 = {B ⊂ A : |B| = k}; C2 = {B ⊂ A : |B| = k + 1} (27)

We have

Proposition 2. The number of reducts for any decision table S with m at-
tributes is bounded by

N(m) =
(

m

-m/2.

)
.

A decision table S is called malicious if it contains exactly N(m) reducts. The
problem is to construct a malicious decision table containing m attributes for
each integer m.

Let
fS = C1 ·C2 · · · · ·CM

be the discernibility function of decision table S, where C1, . . . ,CM are clauses
defined on boolean variables from V AR = {x1, . . . , xm} corresponding to at-
tributes a1, . . . , am (see Sect. 5.1.1).

From (26) and (27) one can prove the following propositions:

Proposition 3. A decision table S with m attributes is malicious if and only if
the discernibility function fS has exactly N(m) prime implicants. In particular,

– if m is even, then fS can be transformed to the form:

f∗ =
∑

X⊂V AR:|X|=m/2

TX

– if k is odd, then fS can be transformed to one of the forms:

f∗
1 =

∑
X⊂V AR:|X|=(k−1)/2

TX
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or
f∗
2 =

∑
X⊂V AR:|X|=(k+1)/2

TX .

The next proposition describes how discernibility functions of malicious deci-
sion tables look like.

Proposition 4. If S is a malicious decision table, then its discernibility function
function fS must consist of at least Ω(N(k)) clauses.

Proof: Let
fS = C1 ·C2 · · · · ·CM

be an irreducible CNF of the discernibility function fS. We will prove the fol-
lowing facts:

Fact 1. A term TX is an implicant of fS if and only if X ∩ V AR(Ci) �= ∅ for
any m ∈ {1, . . . ,M}.

Ad 1. This fact has been proved in Sect. 5.1.1.
Fact 2. If m is an even integer, then |V AR(Ci)| ≥ m/2 + 1 for any i ∈

{1, . . . ,M}.
Ad 2. Let us assume that there is an index i ∈ {1, . . . ,M} such that |V AR(Ci)|

≤ m/2. We will show that fS �= f∗ (in contrary to Proposition 3).
In fact, because |V AR \ V AR(Ci)| � m/2 then there exists a set of

variables X ⊂ V AR \ V AR(Ci) such that |X | = m/2, which implies that
TX is not an implicant of fS, because X∩V AR(Ci) = ∅. Therefore fS �= f∗.

Fact 3. If m is an even integer, then for any subset of variables X ⊂ V AR such
that |X | = m/2 + 1, there exists i ∈ {1, . . . ,M} such that V AR( Ci) = X .

Ad 3. Let us assume conversely that there exists such X that |X | = m/2 + 1
and X �= V AR(Ci) for any i ∈ {1, . . . ,M}. Let Y = V AR \ X , we have
|Y | = m/2 − 1. Recall that |V AR( Ci)| ≥ m/2 + 1, thus

|Y |+ |V AR( Ci)| ≥ m. (28)

Moreover, for any i ∈ {1, . . . ,M}, we have

Y = V AR \X �= V AR \ V AR( Ci). (29)

From (28) and (29) we have

Y ∩ V AR( Ci) �= ∅.

Therefore, TY is an implicant of fS, which is contradictory to Proposition 3.
Fact 4. If m is an odd integer and fS is transformable to f∗

1 , then for any
subset of variables X ⊂ V AR such that |X | = (m − 1)/2 + 2, there exists
i ∈ {1, . . . ,M} such that V AR( Ci) = X .

Fact 5. If m is an odd integer and fS is transformable to f∗
2 , then for any

subset of variables X ⊂ V AR such that |X | = (m − 1)/2 + 1, there exists
i ∈ {1, . . . ,M} such that V AR( Ci) = X .
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The proofs of Fact 4 and 5 are analogical to the proof of Fact 3.
From Fact 3, 4 and 5 we have:

M �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
m

m/2 + 1

)
= m

m+2N(m) if fS is transformable to f∗(
m

(m + 1)/2 + 1

)
= m−1

m+3N(m) if fS is transformable to f∗
1(

m
(m + 1)/2

)
= N(m) if fS is transformable to f∗

2

Therefore, M � Ω(N(m)) in all cases. �
Let n be the number of objects of S, we have n · (n − 1)/2 � M . From

Proposition 4 we have M � Ω(N(k)), therefore n � Ω(
√

N(k)). Thus we obtain
the following theorem.

Theorem 7. If a decision table S is malicious, then it contains at least Ω
(
√

N(k)) objects.

This result means that, even if malicious decision tables consist of exponential
number of reducts, they are not really terrible because they must contain also
an exponential number of objects.

5.4 Rough Sets and Classification Problems

Classification is one of the most important data mining problem types that
occurs in a wide range of various applications. Many data mining tasks can
be solved by classification methods. The objective is to build from the given
decision table a classification algorithm (sometimes called classification model or
classifier), which assigns the correct decision class to previously unseen objects.

A number of classification methods have been proposed to solve the classi-
fication problem. In this section, we are dealing with the rule based approach,
which is preferred by many rough set based classification methods [8], [149],
[159], [163].

In general, decision rules are logical formulas that indicate the relationship
between condition and decision attributes. Let us begin with the description
language which is a basic tool to define different kinds of description rules.

Definition 11 (The description language). Let A be a set of attributes. The
description language for A is a triple

L(A) = (DA, {∨,∧,¬},FA),

where

– DA is the set of all descriptors of the form:

DA = {(a = v) : a ∈ A and v ∈ V ala};
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– {∨,∧,¬} is the set of standard propositional Boolean connectives;
– FA is the set of boolean expressions defined over DA, called formulas.

Formulas from FA can be treated as a syntactic definition of the description
logics. Their semantics is related to the sample of objects from the universe that
is given by the information table (or decision table). Intuitively, the semantics
of a given formula is defined by the set of all objects that match (satisfy) the
formula. Therefore, semantics can be understood as a function [[.]] : F → 2U .

Definition 12 (The semantics). Let S = (U,A) be an information table de-
scribing a sample U ⊂ X. The semantics of any formula φ ∈ F, denoted by [[φ]]S,
is defined inductively as follows:

[[(a = v)]]S = {x ∈ U : a(x) = v} (30)
[[φ1 ∨ φ2]]S = [[φ1]]S ∪ [[φ2]]S (31)
[[φ1 ∧ φ2]]S = [[φ1]]S ∩ [[φ2]]S (32)

[[¬φ]]S = U \ [[φ]]S (33)

Let us emphasize that the formula can be defined by an information system S,
but one can compute its semantics in another information system S′ �= S. In
such cases, some well defined descriptors which are interpretable in S can have
an empty semantics in S′.

The following theorem shows the correctness of the definition of semantics.

Theorem 8. If φ1 =⇒ φ2 is a tautology of the propositional calculus, then
[[φ1]]S′ ⊆ [[φ2]]S′ for any information system S′.

In the terminology of data mining, every formula φ ∈ F can be treated as
a pattern, since it describes a set of objects, namely [[φ]]S, with some similar
features. We associate with every formula φ the following numeric features:

– length(φ) = the number of descriptors that occur in φ;
– support(φ) = |[[φ]]S| = the number of objects that match the formula.

Thus, one can define the interestingness of a formula by its length and support
[98]. Now we are ready to define decision rules for a given decision table.

Definition 13 (Decision rule). Let S = {U,A ∪ {dec}} be a decision table.
Any implication of a form φ ⇒ δ, where φ ∈ FA and δ ∈ Fdec, is called a decision
rule in S. Formula φ is called the premise and δ is called the consequence of the
decision rule r := φ ⇒ δ. We denote the premise and the consequence of a given
decision rule r by pre(r) and cons(r), respectively.

Example 11. Let us note that every object x ∈ U of the decision table S =
{U,A ∪ {dec}} can be interpreted as a decision rule r(x) defined by:

r(x) ≡
∧

ai∈A

(ai = ai(x)) ⇒ (dec = dec(x))
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Definition 14 (Generic decision rule). The decision rule r with the premise
as a boolean monomial of descriptors, i.e.,

r ≡ (ai1 = v1) ∧ · · · ∧ (aim = vm) ⇒ (dec = k) (34)

is called the generic decision rule.

In this paper, we will consider generic decision rules only. For a simplicity, we
will talk about decision rules keeping in mind the generic ones.

Every decision rule r of the form (34) can be characterized by the following
features:

length(r) – the number of descriptors in the premise of r
[r] – the carrier of r, i.e., the set of objects from U satisfying the

premise of r
support(r) – the number of objects satisfying the premise of r:

support(r) = card([r])
conf(r) – the confidence of r: confidence(r) = |[r]∩DECk|

|[r]|

The decision rule r is called consistent with A if confidence(r) = 1.

5.4.1 Rule Based Classification Approach
In data mining, decision rules are treated as a form of patterns that are dis-
covered from data. We are interested in short, strong decision rules with high
confidence. The linguistic features like “short”, “strong” or “high confidence” of
decision rules can be formulated by means of their length, support and confi-
dence. Such rules can be treated as interesting, valuable and useful patterns in
data.

Any rule-based classification method consists of three phases (Fig. 11):

1. Learning phase: generates a set of decision rules RULES(A) (satisfying some
predefined conditions) from a given decision table A.

2. Rule selection phase: selects from RULES(A) the set of such rules that can
be supported by x. We denote this set by MatchRules(A, x).

3. Classifying phase: makes a decision for x using some voting algorithm for
decision rules from MatchRules(A, x) with respect to the following cases:
(a) MatchRules(A, x) is empty: in this case the decision for x is dec(x) =

“UNKNOWN ′′, i.e., we have no idea how to classify x;
(b) MatchRules(A, x) consists of decision rules for the same decision class,

say kth decision class: in this case dec(x) = k;
(c) MatchRules(A, x) consists of decision rules for the different decision

classes: in this case the decision for x should be made using some voting
algorithm for decision rules from MatchRules(A, x).

The main trouble when we apply the rule-based approach to classification
problem is related to the fact that the number of all decision rules can be ex-
ponential with respect to the size of the given decision table [137], [8], [139]. In
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Fig. 11. Rule-based classification system

practice, we are forced to apply some heuristics to generate a subset of decision
rules which are, in some sense, most interesting.

The most well-known rule induction methods are CN2 [23] [22], AQ [73], [74],
[156], RIPPER [24], [25], LERS [39], [40]. In the next section we will present the
method based on the Boolean reasoning approach.

5.4.2 Boolean Reasoning Approach to Decision Rule Inductions
Let us recall that every formula in the description language L(A) (determined
by the set of attributes A) describes a set of objects and every decision rule
describes the relationship between objects and decision classes. In this section,
we concentrate on generic decision rules only.

Consider the collection M(A) of all monomials in L(A) together with the
partial order 0 where, for formulas φ1 and φ2 of M(A), φ1 0 φ2 if V AR(φ1) ⊆
V AR(φ2), i.e., φ1 is created by removing some descriptors of φ2. The relation
φ1 0 φ2 can be read as “φ1 is a shortening of φ2” or “φ2 is a lengthening of φ1”.

For any object u ∈ U and any subset of attributes B ⊂ A, the information
vector infB(u) of u can be interpreted as a formula

υB(u) =
∧

ai∈A

(ai = ai(u)).

We have the following proposition.

Proposition 5. The collection M(A) of all monomials over the description lan-
guage L(A) together with the relation 0 is a partial order. Single descriptors are
the minimal elements, and information vectors υA(u) for u ∈ U , are the maxi-
mum elements of (M(A),0).
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The relation between 0 and other characteristics of decision rules is expressed
by the following proposition.

Proposition 6. Assume that φ1 and φ2 ∈ M(A), and φ2 is a lengthening of
φ1, i.e., φ1 0 φ2, then the following facts hold:

– length(φ1) ≤ length(φ2);
– [[φ2]]S ≤ [[φ1]]S for any information table S;
– support(φ1) ≥ support(φ2);
– If φ1 ⇒ (dec = i) is a consistent decision rule then φ2 ⇒ (dec = i) is also

consistent.

Many rule generation methods have been developed on the base of rough set
theory. Let us recall the rule induction method based on the Boolean reasoning
approach. This method uses the notion of minimal consistent decision rules
which is defined as follows.

Definition 15 (Minimal consistent rules). For a given decision table S =
(U,A ∪ {dec}), a consistent rule:

r ≡ φ ⇒ (dec = k)

is called the minimal consistent decision rule if any decision rule φ′ ⇒ (dec = k)
(where φ′ is a shortening of φ) is not consistent with S.

The boolean reasoning approach for computing minimal consistent decision rules
has been presented in [137]. Similarly to the reduct problem, let V ar = {x1, . . . , xk}
be the set of boolean variables corresponding to attributes a1, . . . , ak from A.
We have defined the discernibility function for u, v ∈ U as follows:

discu,v(x1, . . . , xk) =
∑

{xi : ai(u) �= ai(v)}.

For any object u ∈ U in a given decision table S = (U,A ∪ {dec}), we define a
function fu(x1, . . . , xk), called the discernibility function for u by

fu(x1, . . . , xk) =
∏

v:dec(v) �=dec(u)

discu,v(x1, . . . , xk). (35)

The set of attributes B is called the object-oriented reduct (relative to the
object u) if the implication

υB(u) ⇒ (dec = dec(u))

is a minimal consistent rule. It has been shown that every prime implicant of
fu corresponds to an “object-oriented reduct” for object u and such reducts are
associated with a minimal consistent decision rules that are satisfied by u [137]
[150]. This fact can be described by the following theorem.

Theorem 9. For any set of attributes B ⊂ A the following conditions are equiv-
alent:
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1. The monomial TX(B) is the prime implicant of the discernibility function
fu.

2. The rule υB(u) ⇒ (dec = dec(u)) is minimal consistent decision rule.

The proof of this theorem is very similar to the proof of Theorem 6, therefore it
has been omitted here. One can see the idea of this proof through the following
example.

Example 12. Let us consider the decision table which is shown in Example 9.
Consider the object number 1:

1. The discernibility function is determined as follows:

f1(x1, x2, x3, x4) =x1(x1 + x2)(x1 + x2 + x3)(x1 + x2 + x3 + x4)
(x2 + x3)(x1 + x2 + x3)(x2 + x3 + x4)(x1 + x2 + x4)

2. After transformation into DNF we have

f1(x1, x2, x3, x4) =x1(x2 + x3)
=x1x2 + x1x3

3. Hence, there are two object oriented reducts, i.e., {a1, a2} and {a1, a3}. The
corresponding decision rules are

(a1 = sunny) ∧ (a2 = hot) ⇒ (dec = no)
(a1 = sunny) ∧ (a3 = high) ⇒ (dec = no)

Let us notice that all rules have the same decision class, precisely the class
of the considered object. If we wish to obtain minimal consistent rules for the
other decision classes, we should repeat the algorithm for another object. Let us
demonstrate once again the application of the Boolean reasoning approach to
decision rule induction for the object number 11.

1. The discernibility function:

f11(x1, x2, x3, x4) =(x2 + x3 + x4)(x2 + x3)(x1 + x2)(x3 + x4)

2. After transformation into DNF we have

f11(x1, x2, x3, x4) = (x2 + x3)(x1 + x2)(x3 + x4)
= (x2 + x1x3)(x3 + x4)
= x2x3 + x2x4 + x1x3 + x1x3x4

= x2x3 + x2x4 + x1x3

3. Hence, there are three object oriented reducts, i.e., {a2, a3}, {a2, a4} and
{a1, a3}. The corresponding decision rules are

(a2 = mild) ∧ (a3 = normal) ⇒ (dec = yes)
(a2 = mild) ∧ (a4 = TRUE) ⇒ (dec = yes)
(a1 = sunny) ∧ (a3 = normal) ⇒ (dec = yes)
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Let us denote by MinConsRules(S) the set of all minimal consistent
decision rules for a given decision table S and denote by MinRules(u|S) the
set of all minimal consistent decision rules that are supported by object u. We
have

MinConsRules(S) =
⋃

u∈U

MinRules(u).

In practice, instead of MinConsRules(S), we use the set of short, strong, and
of high accuracy decision rules defined by

MinRules(S,λmax, σmin, αmin) = {r : (length(r) ≤ λmax) AND
AND (support(r) ≥ σmin) AND (confidence(r) ≥ αmin)} . (36)

Any heuristics for object oriented reducts can be modified to extract decision
rules from MinRules(A,λmax, σmin, αmin). Some of those algorithms were de-
scribed in [8] and implemented in ROSETTA [106] and RSES [11] systems.

5.4.3 Rough Classifier
The rule-based rough approximation of concept (or rough-classifier) has been
proposed in [9]. Let us recall how to construct rough membership functions for
decision classes from a given set of decision rules.

For any object x ∈ U, let MatchRules(S, x) = Ryes ∪Rno, where Ryes is the
set of all decision rules for a decision class C and Rno is the set of decision rules
for other classes. We assign two real values wyes, wno called “for” and “against”
weights to the object x.

The values wyes, wno are defined by

wyes =
∑

r∈Ryes

strength(r); wno =
∑

r∈Rno

strength(r)

where strength(r) is a normalized function which depends on length(r), support
(r), confidence(r) and some global information about the decision table S such
as table size, global class distribution, etc.

One can define the value of μC(x) by

μC(x) =

⎧⎪⎪⎨⎪⎪⎩
undetermined if max(wyes, wno) < ω
0 if wno − wyes ≥ θ and wno > ω
1 if wyes − wno ≥ θ and wyes > ω
θ+(wyes−wno)

2θ in other cases

where ω, θ are parameters set by users. These parameters allow us for flexible
control of the size of the boundary region.

The illustration of how the rough membership function is determined by the
values of wyes and wno is presented in Fig. 12.
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Fig. 12. Illustration of μC(x)

6 Rough Sets and ABR Approach to Discretization

Discretization of real value attributes is an important task in data mining, par-
ticularly for the classification problem. Empirical results show that the quality of
classification methods depends on the discretization algorithm used in the pre-
processing step. In general, discretization is a process of searching for partition
of attribute domains into intervals and unifying the values over each interval.
Hence, the discretization problem can be defined as a problem of searching for
a relevant set of cuts (i.e., boundary points of intervals) on attribute domains.

6.1 Discretization as Data Transformation Process

Let S = (U,A ∪ {dec}) be a given decision table where U = {x1, x2, . . . , xn}.
Any attribute a ∈ A is called a numeric attribute if its domain is a subset of
real numbers. Without loss of generality we will assume that Va = [la, ra) ⊂ R
where R is the set of real numbers. Moreover, we will assume that the decision
table S is consistent, i.e., every two objects that have distinct decision classes
are discernible by at least one attribute.

Any pair (a; c), where a ∈ A and c ∈ R, defines a partition of Va into left-
hand-side and right-hand-side interval. In general, if we consider an arbitrary set
of cuts on an attribute a ∈ A

Ca = {(a; ca
1), (a; c

a
2), . . . , (a; ca

ka
)}

where ka ∈ N and ca
0 = la < ca

1 < ca
2 < · · · < ca

ka
< ra = ca

ka+1, one can see that
Ca defines a partition on Va into sub-intervals as follow:

Va = [c0; ca
1) ∪ [ca

1 ; c
a
2) ∪ · · · ∪ [ca

ka
; ca

ka+1).
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Therefore, we can say that the set of cuts Ca defines a discretization of a, i.e.,
creates a new discrete attribute a|Ca : U → {0, . . . , ka} such that

a|Ca(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if a(x) < ca
1 ,

1 if a(x) ∈ [ca
1 , c

a
2),

. . . . . .

ka − 1 if a(x) ∈ [ca
ka−1, c

a
ka

),
ka if a(x) ≥ ca

ka
.

(37)

In other words, a|Ca(x) = i ⇔ a(x) ∈ [ca
i ; ca

i+1) for any x ∈ U and i ∈ {0, . . . , ka}
(see Fig. 13).

�
la

ca
1 ca

2
. . . ca

ka−1 ca
ka

ra

a :

� 		 �� 	� 	
0 1

. . .
ka − 1 kaaDa :

Fig. 13. The discretization of real value attribute a ∈ A defined by the set of cuts
{(a; ca

1), (a; ca
2), . . . , (a; ca

ka
)}

Analogously, any collection of cuts on a family of real value attributes C =⋃
a∈A Ca determines a global discretization of the whole decision table. Particu-

larly, a collection of cuts

C =
⋃

ai∈A

Cai =
{(

a1; c11
)
, . . . ,
(
a1; c1k1

)}
∪
{(

a2; c21
)
, . . . ,

(
a2; c2k2

)}
∪ . . .

transforms the original decision table S = (U,A∪{dec}) into a new decision table
S|C = (U,AC ∪ {dec}), where A|C = {a|Ca : a ∈ A} is the set of discretized
attributes. The table S|C is also called the C-discretized decision table of S.

Example 13. Let us consider again the weather data which has been discussed
in the previous section (see Table 6) but this time attribute a2 measures the
temperature in Fahrenheit degrees, and a3 measures the humidity (in %).

The collection of cuts C = {(a2; 70), (a2; 80), (a3; 82)} creates two new at-
tributes a2|C and a3|C defined by

a2|C(x) =

⎧⎪⎨⎪⎩
0 if a2(x) < 70;
1 if a2(x) ∈ [70, 80);
2 if a2(x) ≥ 80.

a3|C(x) =

{
0 if a3(x) < 82;
1 if a3(x) ≥ 82.

The discretized decision table is presented in Table 13. The reader can compare
this discretized decision table with the decision table presented in Table 6. One
can see that these tables are equivalent. In particular, if we assign to the values 0,
1, 2 of a2|C names “cool”, “mild” and “hot” and map the values 0, 1 of a3|C into
“normal” and “high”, respectively, then we will have the same decision tables.
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Table 11. An example of decision table with two symbolic and two continu-
ous attributes (on the left) and its discretized decision table using cut set C =
{(a2; 70), (a2; 80), (a3; 82)} (on the right side)

outlook temp. hum. windy play

a1 a2 a3 a4 dec

sunny 85 85 FALSE no

sunny 80 90 TRUE no

overcast 83 86 FALSE yes

rainy 70 96 FALSE yes

rainy 68 80 FALSE yes

rainy 65 70 TRUE no

overcast 64 65 TRUE yes

sunny 72 95 FALSE no

sunny 69 70 FALSE yes

rainy 75 80 FALSE yes

sunny 75 70 TRUE yes

overcast 72 90 TRUE yes

overcast 81 75 FALSE yes

rainy 71 91 TRUE no

=⇒

outlook temp. hum. windy play

a1 a2|C a3|C a4 dec

sunny 2 1 FALSE no

sunny 2 1 TRUE no

overcast 2 1 FALSE yes

rainy 1 1 FALSE yes

rainy 0 0 FALSE yes

rainy 0 0 TRUE no

overcast 0 0 TRUE yes

sunny 1 1 FALSE no

sunny 0 0 FALSE yes

rainy 1 0 FALSE yes

sunny 1 0 TRUE yes

overcast 1 1 TRUE yes

overcast 2 0 FALSE yes

rainy 1 1 TRUE no

The previous example illustrates discretization as the data transformation
process. Sometimes, it is more convenient to denote the discretization as an op-
erator on the domain of decision tables. Hence, instead of S|C we will sometimes
use the notion Discretize(S,C) to denote the discretized decision table.

6.1.1 Classification of Discretization Methods
One can distinguish among existing discretization (quantization) methods using
different criteria [28]:

1. Local versus global methods: Local methods produce partitions that are ap-
plied to localized regions of the object space (e.g., decision tree). Global
methods produce a mesh over k-dimensional real space, where each attribute
value set is partitioned into intervals independent of the other attributes.

Fig. 14. Illustration of the local and global discretization
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2. Static versus dynamic methods: One can distinguish between static and dy-
namic discretization methods. Static methods perform one discretization
pass for each attribute and determine the maximal number of cuts for this at-
tribute independently of the others. Dynamic methods are realized by search-
ing through the family of all possible cuts for all attributes simultaneously.

3. Supervised versus unsupervised methods: Several discretization methods do
not make use of decision values of objects in discretization process. Such
methods are called unsupervised discretization methods. In contrast, meth-
ods that utilize the decision attribute are called supervised discretization
methods.

According to this classification, the discretization method described in the
next section is dynamic and supervised.

6.1.2 Optimal Discretization Problem
It is obvious, that the discretization process is associated with a loss of infor-
mation. Usually, the task of discretization is to determine the set of cuts C of
a minimal size from a given decision table S such that, in spite of losing infor-
mation, the C-discretized table S|C still keeps some useful1 properties of S. In
[79], we have presented a discretization method based on the rough set and the
Boolean reasoning approach that guarantees the discernibility between objects.
This method makes use of the notion of consistent, irreducible and optimal sets
of cuts. Let us recall the basic definition of discernibility between objects.

Definition 16. Let S = (U,A ∪ {dec}) be a given decision table. We say that a
cut (a; c) on an attribute a ∈ A discerns a pair of objects x, y ∈ U (or objects x
and y are discernible by (a; c)) if

(a(x) − c)(a(y) − c) < 0.

Two objects are discernible by a set of cuts C if they are discernible by at least
one cut from C.

Intuitively, the cut (a; c) on a discerns objects x and y if and only if a(x) and
a(y) are lying on distinct sides of c on the real axis (see Fig. 15).

aca(x) a(y)

x

y

Fig. 15. Two objects x, y are discernible by a cut (a; c)

Let us point out that the notion of discernibility and indiscernibility was in-
troduced in Sect. 2.3. Two objects x, y ∈ U are said to be discernible by a set of
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attributes B ⊂ A if infB(x) �= infB(y). One can see that there are some analo-
gies between the attribute-based discernibility and the cut-based discernibility.
In fact, the discernibility determined by cuts implies the discernibility deter-
mined by attributes. The inverse implication does not always hold, therefore we
have the following definition.

Definition 17. A set of cuts C is consistent with S (or S -consistent, for short)
if and only if for any pair of objects x, y ∈ U such that dec(x) �= dec(y), the
following condition holds:

IF x, y are discernible by A THEN x, y are discernible by C.

The discretization process made by consistent set of cuts is called the compatible
discretization. We are interested in searching for consistent sets of cuts of the
size as small as possible. Let us specify some special types of consistent sets of
cuts.

Definition 18. A consistent set C of cuts is S-irreducible if every proper subset
C′ of C is not S-consistent. A consistent set C of cuts is S-optimal if for any
S-consistent set of cuts C′:

card (C) ≤ card (C′) ,

i.e., C contains a smallest number of cuts among S-consistent sets of cuts.

The irreducibility can be understood as a type of reducts. Irreducible sets of
cuts are minimal, w.r.t. the set inclusion ⊆, in the family of all consistent sets
of cuts. In such interpretation, optimal sets of cuts can be treated as minimal
reducts. Formally, the optimal discretization problem is defined as follows:

OptiDisc: optimal discretization problem
input: A decision table S.
output: S-optimal set of cuts.

The corresponding decision problem can be formulated as:

DiscSize: k-cuts discretization problem
input: A decision table S and an integer k.
question: Decide whether there exists a S-irreducible set of cuts P

such that card(P) < k.

The following fact has been shown in [79].

Theorem 10. The problem DiscSize is polynomially equivalent to the Primi-
Size problem.

As a corollary, we can prove the following Theorem.
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Theorem 11 (Computational complexity of discretization problems).

1. The problem DiscSize is NP -complete.
2. The problem OptiDisc is NP -hard.

This result means that we can not expect a polynomial time searching algorithm
for optimal discretization, unless P = NP.

6.2 Discretization Method Based on Rough Set and Boolean
Reasoning

Any cut (a; c) on an attribute a ∈ A defines a partition of Va into left-hand-side
and right-hand-side intervals and also defines a partition of U into two disjoint
subsets of objects Uleft(a; c) and Uright(a; c) as follows:

Uleft(a; c) = {x ∈ U : a(x) < c}, Uright(a; c) = {x ∈ U : a(x) ≥ c}.

Two cuts (a; c1) and (a; c2) on the same attribute a are called equivalent if they
define the same partition of U , i.e.,

(Uleft(a; c1), Uright(a; c1)) = (Uleft(a; c2), Uright(a; c2)).

We denote this equivalence relation by c1 ≡a c2.
For a given decision table S = {U,A∪{dec}} and a given attribute a ∈ A, we

denote by
a(U) = {a(x) : x ∈ U} =

{
va
1 , v

a
2 , . . . , v

a
na

}
the set of all values of attribute a occurring in the table S. Additionally, let us
assume that these values are sorted in increasing order, i.e., va

1 < va
2 < · · · < va

na
.

One can see that two cuts (a; c1) and (a; c2) are equivalent if and only if
there exists i ∈ {1, na − 1} such that c1, c2 ∈ (va

i , v
a
i+1]. In this section, we will

not distinguish between equivalent cuts. Therefore, we will unify all cuts in the
interval (va

i , v
a
i+1] by one representative cut

(
a; va

i +va
i+1

2

)
which is also called the

generic cut.
The set of all possible generic cuts on a, with respect to the equivalence

relation, is denoted by

GCutsa =
{(

a;
va
1 + va

2

2

)
,

(
a;

va
2 + va

3

2

)
, . . . ,

(
a;

va
na−1 + va

na

2

)}
. (38)

The set of all candidate cuts of a given decision table is denoted by

GCutsS =
⋃
a∈A

GCutsa (39)

In an analogy to the equivalence relation between two single cuts, two sets of
cuts C′ and C are equivalent with respect to decision table S and denoted by
C′ ≡S C, if and only if S|C = S|C′ . The equivalence relation ≡S has finite number
of equivalence classes. In the sequel, we will consider only those discretization
processes which are made by a subset C ⊂ GCutsS of candidate cuts.
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Example 14. For the decision table from Example 13, the sets of all values of
continuous attributes are as follows:

a2(U) = {64, 65, 68, 69, 70, 71, 72, 75, 80, 81, 83, 85}
a3(U) = {65, 70, 75, 80, 85, 86, 90, 91, 95, 96}

Therefore, we have 11 candidate cuts on a2 and 9 candidate cuts on a3:

GCutsa2 = {(a2; 64.5), (a2; 66.5), (a2; 68.5), (a2; 69.5), (a2; 70.5),
(a2; 71.5), (a2; 73.5), (a2; 77.5), (a2; 80.5), (a2; 82), (a2; 84)};

GCutsa3 = {(a3; 67.5), (a3; 72.5), (a3; 77.5), (a3; 82.5), (a3; 85.5),
(a3; 88), (a3; 90.5), (a3; 93), (a3; 95.5)}.

The set of cuts C = {(a2; 70), (a2; 80), (a3; 82)} in the previous example is equiv-
alent to the following set of generic cuts:

C = {(a2; 70), (a2; 80), (a3; 82)} ≡S {(a2; 69.5), (a2; 77.5), (a3; 82.5)}.
Fig. 16 presents the application of the Boolean reasoning approach to the

optimal discretization problem. As usual, let us begin with the encoding method.

Optimal discretization problem −−−−−−−−→ discernibility function ΨS

�
Optimal set of cuts π ←−−−−−−−−−−−−−−−−− Prime implicants of ΨS

Fig. 16. The Boolean reasoning approach to the optimal discretization problem

6.2.1 Encoding of Optimal Discretization Problem by Boolean
Functions

Consider a decision table S =(U,A ∪ {d}) where U = {u1,u2, . . . ,un} and A =
{a1, . . . , ak}. We encode the optimal discretization problem for S as follows:

Boolean variables: Let C =
∑

am∈A Cam be a set of candidate cuts. Candidate
cuts are defined either by an expert/user or by taking all generic cuts (i.e., by
setting C = GCutsS). Assume that

Cam = {(am, cm
1 )︸ ︷︷ ︸

pam
1

, . . . , (am, cm
nm

)︸ ︷︷ ︸
pam

nm

}

are candidate cuts on the attribute am ∈ A.
Let us associate with each cut (am, cm

i ) ∈ Cam a boolean variable pm
i and

let us denote by BCutsam =
{
pam
1 , . . . , pam

nm

}
the set of boolean variables corre-

sponding to candidate cuts on the attribute am. For any set of cuts X ⊂ C we
denote by ΣX (and ΠX) the Boolean function being disjunction (and conjunc-
tion) of boolean variables corresponding to cuts from X, respectively.
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Encoding function: The optimal discretization problem is encoded by a Boolean
function over the set of boolean variables P =

⋃
Pam as follows:

Firstly, for any pair of objects ui,uj ∈ U we denote by Xa
i,j the set of cuts

from Ca discerning ui and uj, i.e.

Xa
i,j = {(a; ca

k) ∈ Ca : (a(ui) − ca
k)(a(uj) − ca

k) < 0} .

Let Xi,j =
⋃

a∈A Xa
i,j . The discernibility function ψi,j for a pair of objects ui,uj

is defined by disjunction of variables corresponding to cuts from Xi,j , i.e.,

ψi,j =

{
ΣXi,j if Xi,j �= ∅

1 if Xi,j = ∅
(40)

For any set of cuts X ⊂ C let AX : P → {0, 1} be an assignment of variables
corresponding to the characteristic function of X , i.e.,

AX(pam

k ) = 1 ⇔ (a; cam

k ) ∈ X.

We can see that a set of cuts X ⊂ C satisfies ψi,j , i.e., ψi,j(AX) = 1 if and
only if ui and uj are discernible by at least one cut from X . The discernibility
Boolean function of S is defined by:

ΦS =
∏

d(ui) �=d(uj)

ψi,j . (41)

One can prove the following theorem [79].

Theorem 12. For any set of cuts X:

1. X is S-consistent if and only if ΦS(AX) = 1;
2. X is S-irreducible if and only if the monomial ΠX is a prime implicant of

ΦS;
3. X is S-optimal if and only if the monomial ΠX is the shortest prime impli-

cant of the function ΦS.

As a corollary we can obtain that the problem of searching for an optimal set
of cuts for a given decision table is polynomially reducible to the problem of
searching for the minimal prime implicant of a monotone Boolean function.

Example 15. The following example illustrates main ideas of the construction.
We consider the decision table with two conditional attributes a, b and seven

objects u1, . . . ,u7. The values of attributes on these objects and the values of
the decision d are presented in Table 12(a). Geometrical interpretation of objects
and decision classes are shown in Fig. 17.

The sets of values of a and b on objects from U are given by

a(U) = {0.8, 1, 1.3, 1.4, 1.6} ,
b(U) = {0.5, 1, 2, 3} ,
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Table 12. The discretization process: (a)The original decision table S. (b)The C-
discretization of S, where C ={(a; 0.9), (a; 1.5), (b; 0.75), (b; 1.5)}.

S a b d
u1 0.8 2 1
u2 1 0.5 0
u3 1.3 3 0
u4 1.4 1 1
u5 1.4 2 0
u6 1.6 3 1
u7 1.3 1 1 (a)

=⇒

S|C a|C b|C d
u1 0 2 1
u2 1 0 0
u3 1 2 0
u4 1 1 1
u5 1 2 0
u6 2 2 1
u7 1 1 1 (b)

and the cardinalities of a(U) and b(U) are equal to na = 5 and nb = 4, respec-
tively. The set of boolean variables defined by S is equal to

BCutsS =
{
pa
1 , p

a
2 , p

a
3 , p

a
4 , p

b
1, p

b
2, p

b
3

}
,

where pa
1 ∼ [0.8; 1) of a (i.e., pa

1 corresponds to the interval [0.8; 1) of attribute
a); pa

2 ∼ [1; 1.3) of a; pa
3 [1.3; 1.4) of a; pa

4 ∼ [1.4; 1.6) of a; pb
1 ∼ [0.5; 1) of b;

pb
2 ∼ [1; 2) of b; pb

3 ∼ [2; 3) of b.
The discernibility formulas ψi,j for different pairs (ui,uj) of objects from U

are as following:

ψ2,1 = pa
1 + pb

1 + pb
2; ψ2,4 = pa

2 + pa
3 + pb

1;
ψ2,6 = pa

2 + pa
3 + pa

4 + pb
1 + pb

2 + pb
3; ψ2,7 = pa

2 + pb
1;

ψ3,1 = pa
1 + pa

2 + pb
3; ψ3,4 = pa

2 + pb
2 + pb

3;
ψ3,6 = pa

3 + pa
4 ; ψ3,7 = pb

2 + pb
3;

ψ5,1 = pa
1 + pa

2 + pa
3 ; ψ5,4 = pb

2;
ψ5,6 = pa

4 + pb
3; ψ5,7 = pa

3 + pb
2.

The discernibility formula ΦS in CNF form is given by

ΦS =
(
pa
1 + pb

1 + pb
2

) (
pa
1 + pa

2 + pb
3

)
(pa

1 + pa
2 + pa

3)
(
pa
2 + pa

3 + pb
1

)
pb
2(

pa
2 + pb

2 + pb
3

) (
pa
2 + pa

3 + pa
4 + pb

1 + pb
2 + pb

3

)
(pa

3 + pa
4)
(
pa
4 + pb

3

)(
pa
2 + pb

1

) (
pb
2 + pb

3

) (
pa
3 + pb

2

)
.

Transforming the formula ΦS into its DNF form we obtain four prime implicants:

ΦS = pa
2p

a
4p

b
2 + pa

2p
a
3p

b
2p

b
3 + pa

3p
b
1p

b
2p

b
3 + pa

1p
a
4p

b
1p

b
2.

If we decide to take, e.g., the last prime implicant t = pa
1p

a
4p

b
1p

b
2, we obtain

the following set of cuts

C (t) = {(a; 0.9) , (a; 1.5) , (b; 0.75) , (b; 1.5)} .

The new decision table SP(S) is represented in Table 12 (b).
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Fig. 17. Geometrical representation of data and cuts

6.2.2 Discretization by Reduct Calculation
First we show that discretization problems for a given decision table S =
(U,A ∪ {d}) are polynomially equivalent to some problems related to reduct
computation of a decision table S∗ built from S. The construction of decision
table S∗ = (U∗, A∗ ∪ {d∗}) is as follows:

– U∗ = {(ui,uj) ∈ U × U : (i < j) ∧ (d(ui) �= d(uj))} ∪ {new}, where new /∈
U × U is an artificial element which is useful in the proof of Proposition 7
presented below;

– d∗ : U∗ → {0, 1} is defined by d∗ (x) =
{

0 if x = new
1 otherwise;

– A∗ = {pa
s : a ∈ A and s corresponds to the sth interval

[
va

s , v
a
s+1

)
for a}.

For any pa
s ∈ A∗ the value pa

s ((ui,uj)) is equal to 1 if[
va

s , v
a
s+1

)
⊆ [min {a (ui) , a (uj)} ,max {a (ui) , a (uj)})

and 0 otherwise. We also put pa
s (new) = 0. The following proposition has been

proved in [79].

Proposition 7. The problem of searching for an irreducible set of cuts is poly-
nomially equivalent to the problem of searching for a relative reduct for a decision
table.

6.2.3 Basic Maximal Discernibility Heuristic
In the previous section, the optimal discretization problem has been transformed
to the minimal reduct problem (see Proposition 7). According to the proof of
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Fig. 18. The minimal set of cuts of decision table S

this fact, every cut can be associated with a set of pairs of objects which are
discernible by this cuts. Therefore, any optimal set of cuts can be treated as
the minimal covering of the set of all conflict pairs of objects, i.e., objects from
different decision classes. The “MD heuristic”, in fact, is the greedy algorithm
for the minimal set covering (or minimal set hitting problem). It is based on
the best-first searching strategy [95], [102]. The MD heuristic always makes the
choice of the cut that discerns maximal number of conflict pairs of objects. This
step is repeated until all conflict pairs are discerned by selected cuts. This idea
is formulated in Algorithm 3.

Algorithm 3. MD-heuristic for the optimal discretization problem
Input: Decision table S = (U,A, dec).
Output: The semi-optimal set of cuts.
begin

Construct the table S∗ from S and set B :=S∗;1

Select the column of B with the maximal number of occurrences of 1’s;2

Delete from B the selected column in Step 2 together with all rows3

marked in this column by 1;
if B consists of more than one row then4

Go to Step 2;
else

Return the set of selected cuts as a result;
Stop;

end
end
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Example 16. Let us demonstrate the MD-heuristic for the decision table from
Example 15.

In Table 13 the decision table S∗ is presented. Objects in this table are all
pairs (xi, xj) discernible by the decision d. One more object is included, namely
new with all values of attributes equal to 0. This allows us formally to keep the
condition: “at least one occurrence of 1 (for conditional attributes) appears in
any row for any subset of columns corresponding to any prime implicant”.

Table 13. Table S∗ constructed from table S

S∗ pa
1 pa

2 pa
3 pa

4 pb
1 pb

2 pb
3 d∗

(u1, u2) 1 0 0 0 1 1 0 1

(u1, u3) 1 1 0 0 0 0 1 1

(u1, u5) 1 1 1 0 0 0 0 1

(u4, u2) 0 1 1 0 1 0 0 1

(u4, u3) 0 0 1 0 0 1 1 1

(u4, u5) 0 0 0 0 0 1 0 1

(u6, u2) 0 1 1 1 1 1 1 1

(u6, u3) 0 0 1 1 0 0 0 1

(u6, u5) 0 0 0 1 0 0 1 1

(u7, u2) 0 1 0 0 1 0 0 1

(u7, u3) 0 0 0 0 0 1 1 1

(u7, u5) 0 0 1 0 0 1 0 1

new 0 0 0 0 0 0 0 0

Relative reducts of this table correspond exactly to prime implicants of the
function ΦS (Proposition 7). Our algorithm is choosing first pb

2, next pa
2 , and

finally pa
4 . Hence, S =

{
pa
2 , p

a
4 , p

b
2

}
, and the resulting set of cuts C = C(S) =

{(a; 1.15), (a; 1.5), (b; 1.5)}. According to Example 15 we know that this result is
the optimal set of cuts.

Fig. 18 presents the geometrical interpretation of the constructed set of cuts
(marked by bold lines).

6.2.4 Complexity of MD-heuristic for Discretization
MD-heuristic is a global, dynamic and supervised discretization method. Un-
like local methods which can be efficiently implemented by the decision tree
approach, global methods are very challenging for programmers because in each
iteration the quality function strictly depends on the distribution of objects into
the mesh made by the set of actual cuts.

In Algorithm 3, the size of the table S∗ is O(nk · n2) where n is the number
of objects and k is the number of columns in S. Hence, the time complexity of
Step 2 and Step 3 is O(n3k). Therefore, the pessimistic time complexity of the
straightforward implementation of MD heuristic is O(n3k×|C|), where C is the
result set of cuts returned by the algorithm. Moreover, it requires O(n3k) of
memory space to store the table S∗.
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Algorithm 4. Implementation of MD-heuristic using DTree structure
Input: Decision table S = (U, A, dec).
Output: The semi-optimal set of cuts.
begin

DTree D := new DTree();
D.Init(S);
while (D.Conflict()> 0) do

Cut c := D.GetBestCut();
if (c.quality== 0) then

break;
end
D.InsertCut(c.attribute,c.cutpoint);

end
D.PrintCuts();

end

We have shown that the presented MD-heuristic can be implemented more
efficiently. The idea is based on a special data structure for efficient storing the
partition of objects made by the actual set of cuts. This data structure, called
DTree – a shortcut of discretization tree, is a modified decision tree structure.
It contains the following methods:

– Init(S): initializes the data structure for the given decision table;
– Conflict(): returns the number of pairs of undiscerned objects;
– GetBestCut(): returns the best cut point with respect to the discernibility

measure;
– InsertCut(a, c): inserts the cut (a; c) and updates the data structure.

It has been shown that except Init(S) the time complexity of all other methods
is O(nk), where n is the number of objects and k is the number of attribute, see
[79], [105]. The method Init(S) requires O(nk logn) computation steps, because
it prepares each attribute by sorting objects with respect to this attribute.

MD-heuristic (Algorithm 3) can be efficiently implemented using DTree struc-
ture as follows:

This improved algorithm has been implemented in ROSETTA [106] and RSES
[11], [8] systems.

6.3 More Complexity Results

The NP-hardness of the optimal discretization problem was proved for the family
of arbitrary decision tables. In this section, we will show much stronger fact that
the optimal discretization problem restricted to 2-dimensional decision tables is
also NP-hard.

We consider a family of decision tables consisting of exactly two real value
condition attributes a, b and a binary decision attribute d : U → {0, 1}. Any
such decision table is denoted by S = (U, {a, b} ∪ {d}}) and represents a set of
colored points S = {P (ui) = (a(ui), b(ui)) : ui ∈ U} on the plane IR2, where



412 H.S. Nguyen

black and white colors are assigned to points according to their decision. Any
cut (a; c) on a (or (b; c) on b), where c ∈ IR, can be represented by a vertical (or
horizontal) line. A set of cuts is S-consistent if the set of lines representing them
defines a partition of the plane into regions in such a way that all points in the
same region have the same color. The discretization problem for a decision table
with two condition attributes can be defined as follows:

DiscSize2D: k-cuts discretization problem in IR2

input: The set S of black and white points P1, . . . , Pn on the plane,
and an integer k.

question: Decide whether there exists a consistent set of at most k
lines..

We also consider the corresponding optimization problem:

OptiDisc2D: Optimal discretization in IR2

input: The set S of black and white points P1, . . . , Pn on the plane,
and an integer k.

output: S-optimal set of cuts.

The next two theorems about the complexity of discretization problem in
IR2 were presented in [20] and [99]. We would like to recall the proofs of those
theorems to demonstrate the power of the Boolean reasoning approach.

Theorem 13. The decision problem DiscSize2D is NP -complete and the op-
timization version of this problem is NP -hard.

Proof: Assume that an instance I of SetCover problem consists of

S = {u1,u2, . . . ,un},F = {S1, S2, . . . , Sm}, and an integer K

where Sj ⊆ S and
⋃m

i=1 Si = S, and the question is if there are K sets from F
with the sum containing all elements of S. We need to construct an instance I

′

of DiscSize2D such that I has a positive answer iff I
′
has a positive answer.

The construction of I
′

is quite similar to the construction described in the
previous section. We start by building a grid-line structure consisting of verti-
cal and horizontal strips. The regions are in rows labeled by yu1 , . . . , yun and
columns labeled by xS1 , . . . , xSm , xu1 , . . . , xun (see Fig. 19). In the first step, for
any element ui ∈ S we define a family Fi = {Si1 , Si2 , . . . , Simi

} of all subsets
containing the element ui.

If Fi consists of exactly mi ≤ m subsets, then subdivide the row yui into mi

strips, corresponding to the subsets from Fi. For each Sj ∈ Fi place one pair of
black and white points in the strip labeled by ui ∈ Sj inside a region (xui ,yuj )
and the second pair in the column labeled by xSj (see Fig. 19). In each region
(xui ,yuj ) add a special point in the top left corner with a color different from the
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Fig. 19. Construction of configurations Ru1 and Ru2 where Fu1 = {S1, S2, S4, S5} and
Fu2 = {S1, S3, S4}

color of the point on the top right corner. This point is introduced to force at least
one vertical line across a region. Place the configuration Rui for ui in the region
labeled by (xui , yui). Examples of Ru1 and Ru2 where Fu1 = {S1, S2, S4, S5}
and Fu2 = {S1, S3, S4}, are depicted in Fig. 19.

The configuration Rui requires at least mi lines to be separated, among them
at least one vertical. Thus, the whole construction for ui requires at least mi +1
lines. Let I

′
be an instance of DiscSize2D defined by the set of all points forcing

the grid and all configurations Rui with K = k +
∑n

i=1 mi + (2n+m+ 2) as the
number, where the last component (2n + m + 2) is the number of lines defining
the grid. If there is a covering of S by k subsets Sj1 , Sj2 , . . . , Sjk

, then we can
construct K lines that separate well the set of points, namely (2n+m+ 2) grid
lines, k vertical lines in columns corresponding to Sj1 , Sj2 , . . . , Sjk

and mi lines
for the each element ui (i = 1, . . . , n).

On the other hand, let us assume that there are K lines separating the points
from instance I

′
. We show that there exists a covering of S by k subsets. There

is a set of lines such that for any i ∈ {1, . . . , n} there are exactly mi lines passing
across the configuration Rui (i.e., the region labeled by (xui , yui)), among them
exactly one vertical line. Hence, there are at most k vertical lines on rows labeled
by xS1 , . . . , xSm . These lines determine k subsets which cover the whole S. �

Next we will consider the discretization problem that minimizes the number of
homogeneous regions defined by a set of cuts. This discretization problem is
called the Optimal Splitting problem. We will show that the optimal splitting
problem is NP -hard, even when the number of attributes is fixed by 2. The
optimal splitting problem is defined as follows:
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OptiSplit2D: Optimal splitting in IR2

input: The set S of black and white points P1, . . . , Pn on the plane,
and an integer k.

question: Is there a consistent set of cuts partitioning the plane into
at most k regions

Theorem 14. OptiSplit2D is NP -complete.

Proof: It is clear that OptiSplit2D is in NP. The NP-hardness part of the
proof is done by reducing 3SAT to OptiSplit2D (cf. [35]).

Let Φ = C1 · · · · ·Ck be an instance of 3SAT. We construct an instance IΦ of
OptiSplit2D such that Φ is satisfiable iff there is a sufficiently small consistent
set of lines for IΦ. The description of IΦ will specify a set of points S, which
will be partitioned into two subsets of white and black points. A pair of points
with equal horizontal coordinates is said to be vertical, similarly, a pair of points
with equal vertical coordinates is horizontal. If a configuration of points includes
a pair of horizontal points p1 and p2 of different colors, then any consistent
set of lines will include a vertical line L separating p1 and p2, which will be
in the vertical strip with p1 and p2 on its boundaries. Such a strip is referred
to as a forcing strip, and the line L as forced by points p1 and p2. Horizontal
forcing strips and forced lines are defined similarly. The instance IΦ has an
underlying grid-like structure consisting of vertical and horizontal forcing strips.
The rectangular regions inside the structure and consisting of points outside the
strips are referred to as f-rectangles of the grid. The f-rectangles are arranged
into rows and columns.

For each propositional variable p occurring in C use one special row and one
special column of rectangles. In the f-rectangle that is at the intersection of the
row and column place configuration Rp as depicted on Fig. 20.

Notice that Rp requires at least one horizontal and one vertical line to sepa-
rate the white from the black points. If only one such vertical line occurs in a
consistent set of lines, then it separates either the left or the right white point
from the central black one, which we interpret as an assignment of the value true
or false to p, accordingly.

�
��
�

T F

a) b)

� � � � � ��

the strip of r1

the strip of r2

the strip of r3

Fig. 20. a) Configuration Rp b) Configuration RC
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For each clause C in Φ use one special row and one special column of f-
rectangles. Let C be of the form C = r1 ∨ r2 ∨ r3, where the variables in the
literals ri are all different. Subdivide the row into three strips corresponding to
the literals. For each such ri place one black and one white points, of distinct
vertical and horizontal coordinates, inside its strip in the column of the variable
of ri, in the ’true’ vertical strip if ri = p, and in the ’false’ strip if ri = ¬p. These
two points are referred to as configuration RC,i. In the region of the intersection
of the row and column of C place configuration RC as depicted in Fig. 20.
Notice that RC requires at least three lines to separate the white from the black
points, and among them at least one vertical. The example of a fragment of
this construction is depicted in Fig. 21. Column xpi and row xpi correspond to
variable pi, row yC corresponds to clause C.
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xp2 . . .
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xp5 xC. . .
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yp2

. . .

yp5

. . .
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�
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Fig. 21. Construction of configurations Rpi and RC for C = p1 · ¬p2 · ¬p5



416 H.S. Nguyen

Let the underlying grid of f-rectangles be minimal to accommodate this con-
struction. Add horizontal rows of f-rectangles, their number greater by 1 than
the size of Φ. Suppose that a consistent set of lines W includes exactly one
vertical and one horizontal line per each Rp, and exactly one vertical and two
horizontal lines per each RC , let L1 be the set of all these lines. There is also
the set L2 of lines inside the forcing strips, precisely one line per each strip. We
have W = L1 ∪ L2. Let the number of horizontal lines in W be equal to lh and
vertical to lv. These lines create T = (lh − 1) · (lv − 1) regions, and this number
is the last component of IΦ.

Next we show the correctness of the reduction. Suppose first that Φ is satisfi-
able, let us fix a satisfying assignment of logical values to the variables of Φ. The
consistent set of lines is determined as follows. Place one line into each forcing
strip. For each variable p place one vertical and one horizontal line to separate
points in Rp, the vertical line determined by the logical value assigned to p. Each
configuration RC is handled as follows. Let C be of the form C = r1 ∨ r2 ∨ r3.
Since C is satisfied, at least one RC,i, say RC,1, is separated by the vertical line
that separates also Rp, where p is the variable of r1. Place two horizontal lines
to separate the remaining RC,2 nad RC,3. They also separate two pairs of points
in RC . Add one vertical line to complete the separation of the points in RC . All
this means that there is a consistent set of lines which creates T regions.

On the other hand, suppose that there is a consistent set of lines for IΦ,
which determines at most T regions. The number T was defined in such a way
that two lines must separate each Rp and three lines each RC , in the latter
case at least one of them is vertical. Notice that a horizontal line contributes
fewer regions than a vertical one because the grid of splitting strips contains
much more rows than columns. Hence, one vertical line and two horizontal lines
separate each RC , because changing horizontal to vertical would increase the
number of regions beyond T . It follows that for each clause C = r1 ∨ r2 ∨ r3 at
least one RC,i is separated by a vertical line of Rp, where p is the variable of ri,
and this yields a satisfying truth assignment. �

6.4 Attribute Reduction vs. Discretization

We have presented two different concepts of data reduction, namely the attribute
reduction and the discretization of real value attribute. Both concepts are useful
as data preprocessing methods for knowledge discovery processes [32], particu-
larly for rule-based classification algorithms. Attribute reduction eliminates re-
dundant attributes and favours those attributes which are most relevant to the
classification process. Discretization eliminates insignificant differences between
real values by partition of real axis into intervals. Attribute reduction process
can result in generation of short decision rules, while discretization process is
helpful to obtain strong decision rules (supported by large number of objects).

There is a strong relationship between those concepts. If C is an optimal set of
cuts for decision table S then the discretized decision table S|C is not reducible,
i.e., it contains exactly one decision reduct. Every discretization process is as-
sociated with a loss of information, but for some rough set-based applications
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(e.g., dynamic reduct and dynamic rule methods [10]), where reducts are an
important tool, the loss caused by optimal discretization is too large to obtain
strong rules. In this situation we would like to search for a more excessive set
of cuts to ensure bigger number of reducts of discretized decision table, and, at
the same time, to keep some additional information.

In this section, we consider the problem of searching for the minimal set of
cuts which preserves the discernibility between objects with respect to any subset
of s attributes. One can show that this problem, called s-optimal discretization
problem (s-OptiDisc problem), is also NP-hard. Similarly to the case of Op-
tiDisc, we propose a solution based on approximate boolean reasoning approach
for s-OptiDisc problem.

Definition 19. Let S =(U,A ∪ {dec}) be a given decision table and let 1 ≤ s ≤
|A| = k. A set of cuts C is s-consistent with S (or s-consistent in short) iff
for any subset of s attributes B (i.e., |B| = s) C is consistent with subtable
S|B = (U,B ∪ {dec}).

Any 1-consistent set of cuts is called locally consistent and any k-consistent set
of cuts, where k = |A|, is called globally consistent.

Definition 20. An s-consistent set of cuts is called s-irreducible if neither of
its proper subsets is s-consistent.

Definition 21. An s-consistent set of cuts C is called s-optimal if |C| ≤ |Q|
for any s-consistent set of cuts Q.

When s = k = |A|, the definition of k-irreducible and k-optimal set of cuts is
exactly the same as the definition of irreducible and optimal set of cuts. Thus the
concept of s-irreducibility and s-optimality is a generalization of irreducibility
and optimality from Definition 18.

The following proposition presents important properties of s-consistent set of
cuts:

Proposition 8. Let a set of cuts C be s-consistent with a given decision table
S = (U,A ∪ {d}). For any subset of attributes B ⊂ A such that |B| ≥ s, if B
is relative super-reduct of S then the set of discretized attributes B|C is also a
relative super-reduct of discretized decision table S|C.

Example 17. Let us illustrate the concept of s-optimal set of cuts on the decision
table from Table 14. One can see that the set of all relative reducts of Table 14
is equal to R = {{a1, a2}, {a2, a3}}.

The set of all generic cuts is equal to GCutsA = Ca1 ∪Ca2 ∪Ca3 , where

Ca1 = {(a1, 1.5) , (a1, 2.5) , (a1, 3.5) , (a1, 4.5) , (a1, 5.5) , (a1, 6.5) , (a1, 7.5)}
Ca2 = {(a2, 1.5) , (a2, 3.5) , (a2, 5.5) , (a2, 6.5) , (a2, 7.5)}
Ca3 = {(a3, 2.0) , (a3, 4.0) , (a3, 5.5) , (a3, 7.0)}

is illustrated in Fig. 22.
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Table 14. An example decision table with ten objects, three attributes and three
decision classes

A a1 a2 a3 d

u1 1.0 2.0 3.0 0

u2 2.0 5.0 5.0 1

u3 3.0 7.0 1.0 2

u4 3.0 6.0 1.0 1

u5 4.0 6.0 3.0 0

u6 5.0 6.0 5.0 1

u7 6.0 1.0 8.0 2

u8 7.0 8.0 8.0 2

u9 7.0 1.0 1.0 0

u10 8.0 1.0 1.0 0
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Fig. 22. Illustration of cuts on the table S. Objects are marked by three labels with
respect to their decision values.

Some examples of s-optimal sets of cuts for s = 1, 2, 3 are as follows:

C1 = {(a1, 1.5) , (a1, 2.5) , (a1, 3.5) , (a1, 4.5) , (a1, 5.5) , (a1, 6.5) , (a1, 7.5)}
∪ {(a2, 1.5) , (a2, 3.5) , (a2, 5.5) , (a2, 6.5)}
∪ {(a3, 2.0) , (a3, 4.0) , (a3, 7.0)} (42)

C2 = {(a1, 3.5) , (a1, 4.5) , (a1, 5.5) , (a1, 6.5)} ∪ {(a2, 3.5) , (a2, 6.5)}
∪ {(a3, 2.0) , (a3, 4.0)} (43)

C3 = {(a1, 3.5)} ∪ {(a2, 3.5) , (a2, 6.5)} ∪ {(a3, 4.0)} (44)

Thus C1 is the smallest locally consistent set of cuts and C3 is the global
optimal set of cuts. One can see that the table S|C3 has only one reduct:
{a1|C3 , a2|C3 , a3|C3}, while both tables S|C1 and S|C2 still have two reducts.

The following theorem characterizes the complexity of s-OptiDisc problem.
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Table 15. The 2-optimal discretized table S|C2 still has two reducts: {a1|C2 , a2|C2}
and {a2|C2 , a3|C2}

S|C2 a1|C2 a2|C2 a3|C2 d

u1 0 0 1 0

u2 0 1 2 1

u3 0 2 0 2

u4 0 1 0 1

u5 1 1 1 0

u6 2 1 2 1

u7 3 0 2 2

u8 4 2 2 2

u9 4 0 0 0

u10 4 0 0 0

Theorem 15. For a given decision table S = (U,A ∪ {d}) and an integer s, the
problem of searching for s-optimal set of cuts is DTIME(kn logn) for s = 1and
is NP-hard for any s ≥ 2.

Proof: The first part is obvious. The proof of the second part follows from
the NP-hardness of DiscSize2D (optimal discretization for two attributes), see
Theorem 13 from Sect. 6.3. �

The following fact states that s-consistency is monotone with respect to s.
In particular, it implies that one can reduce the s-optimal set of cuts to obtain
(s + 1)-optimal set of cuts.

Theorem 16. For any decision table S = (U,A ∪ {d}), card (A) = k, and for
any integer s ∈ {1, . . . , k − 1}, if the set of cuts P is s-consistent with S, then
P is also (s + 1)-consistent with S.

Proof: We assume that the set of cuts C is s-consistent and not (s+1)-consistent.
Then there exists a set of (s + 1) attributes B = {b1, . . . , bs, bs+1}, such that C
is not consistent with subtable B = (U,B ∪ {d}). Hence, there are two objects
ui,uj such that d (ui) �= d (uj) and (ui,uj) /∈ IND(B) (i.e., ∃b∈B [b(ui) �= b(uj)])
but there is no cut on C which discerns ui and uj. Since (u1,u2) /∈ IND(B),
then one can choose the subset B′ ⊂ B with s attributes such that (ui,uj) /∈
IND(B′). Therefore, C is not consistent with the subtable B = (U,B′ ∪ {d})
and in the consequence C is not s-consistent which is a contradiction. �

6.4.1 Boolean Reasoning Approach to s-OptiDisc
Consider a decision table S = (U,A ∪ {dec}) where U = {u1,u2, . . . ,un} and
A = {a1, . . . , ak}. We encode the s-OptiDisc problem by a Boolean function in
a similar way as in Sect. 6.2:

boolean variables: Let Cam be the set of candidate cuts on the attribute am

for m = 1, . . . , k. We denote by Pam =
{
pam
1 , . . . , pam

nm

}
the set of boolean
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variables corresponding to cuts from Cam . Thus the set of all boolean vari-
ables is denoted by

P =
k⋃

m=1

Pam .

Encoding function: In Sect. 6.2, for any objects ui,uj ∈ U , we denoted by
Xa

i,j the set of cuts from Ca discerning ui and uj, i.e.

Xa
i,j = {(a; ca

k) ∈ Ca : (a(ui) − ca
k)(a(uj)− ca

k) < 0} .

For any subset of attributes B ⊂ A, the B-discernibility function for ui and
uj is defined as a disjunction of boolean variables corresponding to the cuts
from B discerning ui and uj :

ψB
i,j =

∑
a∈B

ΣXa
i,j

= ΣXB
i,j

where XB
i,j =

⋃
a∈B Xa

i,j . The (Boolean) discernibility function for the set of
attributes B is defined by:

ΦB =
∏

d(ui) �=d(uj)

ψB
i,j .

The encoding function for s-optimal discretization problem is defined as
follows:

Φs =
∏

|B|=s

ΦB =
∏

|B|=s

∏
d(ui) �=d(uj)

ψB
i,j .

The construction of Φs enables us to prove of the following theorem.

Theorem 17. A set of cuts C is s-optimal with a given decision table if and
only if the corresponding boolean monomial ΠC is minimal prime implicant of
Φs.

One can see that the function Φs is a conjunction of N clauses of form ψB
i,j where

N =
(

k

s

)
· | {(ui,uj) : d (ui) �= d (uj)} |︸ ︷︷ ︸

=conf lict(S)

= O

((
k

s

)
· n2

)

Thus, any greedy algorithm of searching for minimal prime implicant of the
function Φs needs at least O

(
n2 ·
(
k
s

))
steps to compute the quality of a given cut

(i.e., the number of clauses satisfied by this cut). Let us discuss some properties
of the function Φs which are useful when solving this problem.

Recall that the discernibility function for the reduct problem was constructed
by the discernibility matrix

M(S) = [Mi,j ]ni,j=1

where Mi,j = {a ∈ A : a (ui) �= a (uj)} is the set of attributes discerning ui and
uj. The relationship between reduct and discretization problems is expressed by
the following technical lemma:
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Lemma 1. For any pair of objects ui,uj ∈ U and for any subset of attributes
B ∏

|B|=s

ψB
i,j ≥

∏
a∈Mi,j

ψa
i,j .

The equality holds if |Mi,j | ≤ k − s + 1.

Proof: Firstly, from the definition of Mi,j , we have ψB
i,j = ψ

B∩Mi,j

i,j . Thus

ψB
i,j =

∑
a∈B∩Mi,j

ψa
i,j ≥

∏
a∈B∩Mi,j

ψa
i,j ≥

∏
a∈Mi,j

ψa
i,j .

Hence ∏
|B|=s

ψB
i,j ≥

∏
a∈Mi,j

ψa
i,j .

On the other hand, if |Mi,j| ≤ k − s + 1, then |A − Mi,j| ≥ s − 1. Let
C ⊂ A −Mi,j be a subset of s − 1 attributes. For each attribute a ∈ Mi,j , we
have |{a} ∪C| = s and

ψ
{a}∪C
i,j = ψa

i,j

Thus ∏
|B|=s

ψB
i,j =

⎛⎝ ∏
a∈Mi,j

ψa
i,j

⎞⎠ · ψ′ ≤
∏

a∈Mi,j

ψa
i,j .

�
This lemma allows us to simplify many calculations over the function Φs. A pair
of objects is called conflicting if d(ui) �= d(uj), i.e., ui and uj are from distinct
decision classes. For any set of cuts C, we denote by Ai,j(C) the set of attributes
for which there is at least one cut from C discerning objects ui,uj , thus

Ai,j(C) = {a ∈ A : ∃c∈R((a; c) ∈ C) ∧ [(a(ui) − c)(a(uj) − c) < 0]}.

It is obvious that
Ai,j(C) ⊆ Mi,j ⊆ A.

A set of cuts C is consistent (or k-consistent) if and only if |Ai,j(C)| ≥ 1 for
any pair of conflicting objects ui,uj. We generalize this observation by showing
that a set of cuts C is s-consistent if and only if the sets Ai,j(C) are sufficiently
large, or equivalently, the difference between A and Ai,j(C) must be sufficiently
small.

Theorem 18. For any set of cuts C, the following statements are equivalent:

a) C is s-consistent;
b) The following inequality

|Ai,j(C)| ≥ ki,j = min{|Mi,j|, k − s + 1} (45)

holds for any pair of conflicting objects ui,uj ∈ U .
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Proof: The function Φs can be rewritten as follows:

Φs =
∏

d(ui) �=d(uj)

∏
|B|=s

ψB
i,j

Let Ps(A) = {B ⊂ A : |B| = s}. Theorem 17 states that C is s-consistent if and
only if C ∩ XB

i,j �= ∅ for any pair of conflicting objects ui,uj ∈ U and for any
B ∈ Ps(A) such that XB

i,j �= ∅.
Therefore, it is enough to prove that, for any pair of conflicting objects ui,uj ∈

U , the following statements are equivalent

a) |Ai,j(C)| ≥ ki,j ; (46)

b) ∀B∈Ps(A)(XB
i,j �= ∅) =⇒ C ∩XB

i,j �= ∅ (47)

To do so, let us consider two cases:

1. |Mi,j | ≤ k − s + 1: in this case ki,j = |Mi,j |. We have

|Ai,j(C)| ≥ ki,j ; ⇐⇒ Ai,j(C) = Mi,j

⇐⇒ ∀a∈Mi,j C ∩Xa
i,j �= ∅

By previous lemma, we have∏
|B|=s

ψB
i,j =

∏
a∈Mi,j

ψa
i,j .

Thus a) ⇐⇒ b).
2. |Mi,j | > k − s + 1: in this case we have ki,j = k − s + 1 and the condition

|Ai,j(C)| ≥ k − s + 1 is equivalent to

|A−Ai,j(C)| < s.

Consequently, any set B ∈ Ps(A) has non-empty intersection with Ai,j(C),
thus C ∩XB

i,j �= ∅.

We have shown in both cases that a) ⇐⇒ b). �
The MD-heuristic was presented in previous section as greedy algorithm for the
Boolean function Φk. The idea was based on a construction and an the analysis
of a new table S∗ = (U∗, A∗), where

– U∗ =
{
(ui,uj) ∈ U2 : d(ui) �= d(uj)

}
– A∗ = {c : c is a cut on S}, where c ((ui,uj)) =

{
1 if c discerns ui,uj

0 otherwise

This table consists of O (nk) attributes (cuts) and O
(
n2
)

objects (see Table 16).
We denote by Disc(a, c) the discernibility degree of the cut (a; c) which is

defined as the number of pairs of objects from different decision classes (or
number of objects in table S∗) discerned by c. The MD-heuristic is searching
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Table 16. Temporary table S∗ constructed for the decision table from Table 15

S∗ a1 a2 a3 ki,j

1.5 2.5 3.5 4.5 5.5 6.5 7.5 1.5 3.5 5.5 6.5 2.0 4.0 7.0

(u1, u2) 1 1 1 2

(u1, u3) 1 1 1 1 1 1 2

(u1, u4) 1 1 1 1 1 2

(u1, u6) 1 1 1 1 1 1 1 2

(u1, u7) 1 1 1 1 1 1 1 1 2

(u1, u8) 1 1 1 1 1 1 1 1 1 1 1 2

(u2, u3) 1 1 1 1 1 2

(u2, u5) 1 1 1 1 2

(u2, u7) 1 1 1 1 1 1 1 2

(u2, u8) 1 1 1 1 1 1 1 1 2

(u2, u9) 1 1 1 1 1 1 1 1 1 2

(u2, u10) 1 1 1 1 1 1 1 1 1 1 2

(u3, u4) 1 1

(u3, u5) 1 1 1 2

(u3, u6) 1 1 1 1 1 2

(u3, u9) 1 1 1 1 1 1 1 1 2

(u3, u10) 1 1 1 1 1 1 1 1 1 2

(u4, u5) 1 1 2

(u4, u7) 1 1 1 1 1 1 1 1 1 2

(u4, u8) 1 1 1 1 1 1 1 1 2

(u4, u9) 1 1 1 1 1 1 1 2

(u4, u10) 1 1 1 1 1 1 1 1 2

(u5, u6) 1 1 2

(u5, u7) 1 1 1 1 2

(u5, u8) 1 1 1 1 1 1 2

(u6, u7) 1 1 1 1 1 2

(u6, u8) 1 1 1 2

(u6, u9) 1 1 1 1 1 1 1 2

(u6, u10) 1 1 1 1 1 1 1 1 2

(u7, u9) 1 1 1 1 2

(u7, u10) 1 1 1 1 1 2

(u8, u9) 1 1 1 1 1 1 1 2

(u8, u10) 1 1 1 1 1 1 1 1 2

for a cut (a; c) ∈ A∗ with the largest discernibility degree Disc(a, c). Then we
move the cut c from A∗ to the result set of cuts P and remove from U∗ all pairs
of objects discerned by c. Our algorithm terminates if U∗ = ∅. We have shown
that MD-heuristic is quite efficient, since it determines the best cut in O (kn)
steps using O (kn) space only.

One can modify this algorithm for the need of s-optimal discretization prob-
lem by applying Theorem 18. At the beginning, we confer required cut num-
ber ki,j and set of discerning attributes Ai,j := ∅ upon every pair of objects
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(ui,uj) ∈ U∗ (see Theorem 18). Next we search for a cut (a; c) ∈ A∗ with the
largest discernibility degree Disc(a, c) and remove (a; c) from A∗ to the result
set of cuts P. Then we insert the attribute a into lists of attributes of all pairs
of objects discerned by (a; c). We also delete from U∗ such pairs (ui,uj) that
|Ai,j | = ki,j . This algorithm is continued until U∗ = ∅.

Algorithm 5. MD-heuristic for s-optimal discretization problem
Input: Decision table S = (U,A, dec)
Output: The semi s-optimal set of cuts;
begin

Construct the table S∗ = (U∗, A∗) from S;
C := ∅;
for each pair of conflicting objects (ui,uj) ∈ U∗ do

Set k[i, j] := min{|Mi,j|, k − s + 1};
Set A[i, j] := ∅;

end
while U∗ �= ∅ do

Select the the cut (a, c) with the maximal number of occurrences of
1’s in S∗;
C := C ∪ {(a, c)};
Delete from S∗ the column corresponding to (a, c);
for each pair of conflicting objects (ui,uj) ∈ U∗ do

A[i, j] := A[i, j] ∪ {a};
if |Ai,j | ≥ ki,j then

Delete (ui,uj) from U∗;
end

end
end
Return C;

end

In case of decision table from Example 17, the temporary table S∗ consists of
33 pairs of objects from different decision classes (see Table 16). For s = 2, the
required numbers of cuts ki,j for all (ui,uj) ∈ U∗ (see Theorem 18) are equal
to 2 except k3,4 = 1. Our algorithm begins by choosing the best cut (a3, 4.0)
discerning 20 pairs of objects from S. In the next step the cut (a1, 3.5) will be
chosen because of 17 pairs of objects discerned by this cut. After this step one
can remove 9 pairs of objects from U∗, e.g., (u1,u6), (u1,u7), (u1,u8), (u2,u5), . . .
because they are discerned by two cuts on two different attributes. If the algo-
rithm stops, one can eliminate some superfluous cuts to obtain the set of cuts
P2 as it was presented in Eqn. (43).

6.5 Bibliography Notes

The classification of discretization methods into three dimensions, i.e., local vs.
global, dynamic vs. static and supervised vs. unsupervised has been introduced
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in [28]. Liu et al. [62] summarize the existing discretization methods and identify
some issues yet to solve. They point out also future research for discretization.
Below we describe some well-known discretization techniques with respect to
this classification schema.

6.5.1 Equal Width and Equal Frequency Interval Binning
These are probably the simplest discretization methods. The first method called
equal width interval discretization involves determining the domain of observed
values of an attribute a ∈ A (i.e., [va

min, v
a
max] ) and dividing this interval into ka

equally sized intervals where ka ∈ N is a parameter supplied by the user. One
can compute the interval width: δ = va

max−va
min

ka
and construct interval boundaries

(cut points): ca
i = va

min + i · δ, where i = 1, . . . , ka − 1.
The second method called equal frequency interval discretization sorts the

observed values of an attribute a (i.e., va
1 < va

2 < · · · < va
na

) and divides them
into ka intervals (ka is also a parameter supplied by the user) where each interval
contains λ =

⌈
na

ka

⌉
sequential values. The cut points are computed by ci =

vi·λ+vi·λ+1
2 for i = 1, . . . , ka − 1.

These methods are global and applied to each continuous attribute indepen-
dently, so they are static. They are also unsupervised discretization methods
because they make no use of decision class information.

The described methods are efficient from the point of view of time and space
complexity. However, because of the discretization of each attribute indepen-
dently, decision rules generated over discretized data will not give us satisfiable
quality of classification for unseen (so far) objects.

6.5.2 OneR Discretizer
Holte (1993)[48] proposed an error-based approach to discretization which is a
global, static and supervised method and is known as OneR (One Rule) Dis-
cretizer. Each attribute is sorted into ascending order and a greedy algorithm
that divides the feature into intervals where each of them contains a strong ma-
jority of objects from one decision class is used. There is an additional constraint
that each interval must include at least some prespecified number of values (the
user has to fix some constant M , which is a minimal number of observed values
in intervals).

Given a minimal size M , each discretization interval is initiated to contain
M consequent values and it is made as pure as possible by moving a partition
boundary (cut) to add an observed value until the count of the dominant decision
class in that interval will increase. Empirical analysis [48] suggests a minimal bin
size of M = 6 performs the best.

6.5.3 Statistical Test Methods
Any cut c ∈ Ca splits the set of values (la, ra) of the attribute a into two intervals:
Lc = (la, c) and Rc = (c, ra). Statistical tests allow to check the probabilistic
independence between the object partition defined by decision attribute and by
the cut c. The independence degree is estimated by χ2 test described by
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χ2 =
2∑

i=1

r∑
j=1

(nij − Eij)
2

Eij

where: r – number of decision classes,
nij – number of objects from jth class in ith interval,

Ri – number of objects in ith interval
(
=
∑r

j=1 nij

)
,

Cj – number of objects in the jth class
(
=
∑2

i=1 nij

)
,

n – total number of objects
(∑2

i=1 Ri

)
,

Eij – expected frequency of Aij

(
= Ri×Cj

n

)
. If either Ri or Cj is 0, Eij is

set to 0.1.

Intuitively, if the partition defined by c does not depend on the partition
defined by the decision d then:

P (Cj) = P (Cj |Lc) = P (Cj |Rc) (48)

for any i ∈ {1, . . . , r}. The condition (48) is equivalent to nij = Eij for any
i ∈ {1, 2} and j ∈ {1, . . . , r}, hence we have χ2 = 0. In the opposite case, if there
exists a cut c which properly separates objects from different decision classes the
value of χ2 test for c is very high.

Discretization methods based on χ2 test are choosing only cuts with large
value of this test (and delete the cuts with small value of χ2 test).

There are different versions of this method (see, e.g., ChiMerge system for
discretization – Kerber (1992) [56], StatDisc- Richeldi & Rossotto (1995), [125],
Chi2 (1995) [64]).

6.5.4 Entropy Methods
A number of methods based on entropy measure established the strong group of
the research in the discretization domain. This concept uses class-entropy as a
criterion to evaluate a list of best cuts which together with the attribute domain
induce the desired intervals.

The class information entropy of the partition induced by a cut point c on
attribute a is defined by

E (a; c;U) =
|U1|
n

Ent (U1) +
|U2|
n

Ent (U2) ,

where n is a number of objects in U and U1, U2 are the sets of objects on the
left side (right side) of the cut c.

For a given feature A, the cut cmin which minimizes the entropy function
over all possible cuts is selected. This method can be applied recursively to both
object sets U1, U2 induced by cmin until some stopping condition is achieved.

There is a number of methods based on information entropy [113], [17], [31],
[21], [114].



Approximate Boolean Reasoning 427

Different methods use different stopping criteria. As an example, we mention
one of them which has been proposed by Fayyad and Irani [31].

Fayyad and Irani used the Minimal Description Length Principle [126] [127]
to determine a stopping criteria for their recursive discretization strategy. First
they defined the Gain of the cut (a; c) over the set of objects U by:

Gain (a; c;U) = Ent (U) − E (a; c;U)

and the recursive partitioning within a set of objects U stops iff

Gain (a; c;U) <
log2 (n− 1)

n
+

Δ (a; c;U)
n

where

Δ (a; c;U) = log2 (3r − 2) − [r ·Ent (U) − r1 · Ent (U1)− r2 · Ent (U2)] ,

and r, r1, r2 are the numbers of decision class labels represented in the sets
U,U1, U2, respectively.

6.5.5 Decision Tree Based Methods
Decision tree is not only a useful tool for classification task but it can be treated
as feature selection as well as discretization method. Information gain measure
can be used to determine the threshold value the gain ratio is greatest in order
to partition the data [124]. A divide and conquer algorithm is then successively
applied to determine whether to split each partition into smaller subsets at each
iteration.

6.5.6 Boolean Reasoning Based Methods
The general idea of applying Boolean reasoning methodology to the discretiza-
tion problem was proposed in [95]. The global discretization method based on
MD-heuristics and improvements were presented lately in [102], [79], [93]. The
local discretization method based on MD-heuristics was proposed in [8].

The NP-hardness of general discretization problem was shown in [95] and [79].
The stronger results related to NP-hardness of discretization in two-dimensional
space were presented in [98]. The discretization method that preserves some
reducts of a given decision table was presented in [104].

7 Approximate Boolean Reasoning Approach to Decision
Tree Induction

In this section, we consider another classification method called decision tree.
The name of this method derives from the fact that it can be represented by
an oriented tree structure, where each internal node is labeled by a test on an
information vector, each branch represents an outcome of the test, and leaf nodes
represent decision classes or class distributions.
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outlook

humidity > 75 windyyes

yes no no yes

sunny overcast rainy

TRUE FALSENO YES

Fig. 23. An exemplary decision tree for the weather data from Table 13

Fig. 23 represents an example of “weather” decision table and corresponding
decision tree for this decision table [123].

Usually, tests in decision trees are required to have small number of possible
outcomes. In Fig. 23 two types of tests are presented. The first type is simply
based on taking one of existing attributes (in Fig. 23 this type of tests occurs
in nodes labeled by outlook and windy). The second type is defined by cuts on
real value attributes (humidity > 75). In general, the following types of tests are
considered in the literature:

1. Attribute-based tests: This type consists of tests defined by symbolic
attributes, i.e., for each attribute a ∈ A we define a test ta such that for any
object u from a universe, ta(u) = a(u);

2. Value-based tests: This type consists of binary tests defined by a pair of
an attribute and its value, i.e., for each attribute a ∈ A and for each value
v ∈ Va we define a test ta=v such that for any object u from a universe,

ta=v(u) =

{
1 if a(u) = v

0 otherwise;

3. Cut-based tests: Tests of this type are defined by cuts on real value at-
tributes. For each attribute a ∈ A and for each value c ∈ R we define a test
ta>c such that for any object u from a universe,

ta>c(u) =

{
1 if a(u) > c

0 otherwise;

4. Value set-based tests: For each attribute a ∈ A and for each set of values
S ⊂ Va we define a test ta∈S such that for any object u from a universe,

ta∈S(u) =

{
1 if a(u) ∈ S

0 otherwise;

This is a generalization of previous types.
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5. Hyperplane-based tests: Tests of this type are defined by linear combi-
nations of continuous attributes. A test tw1a1+···+wkak>w0 , where a1, . . . , ak

are continuous attributes and w0, w1, . . . , wk are real numbers, is defined as
follows:

tw1a1+···+wkak>w0(u) =

{
1 if w1a1(u) + · · · + wkak(u) > w0

0 otherwise;

A decision tree is called binary if it is labeled by binary tests only. In fact,
binary decision tree is a classification algorithm defined by a nested “IF – THEN
– ELSE –” instruction. More precisely, let decision table S = (U,A ∪ {dec}) be
given, where Vdec = {1, . . . , d}, each decision tree for S is a production of the
following grammar system:

decision_tree := dec_class|
<IF> test <THEN> decision_tree <ELSE> decision_tree;

dec_inst := <dec=1>|<dec=2>|...|<dec=d>;
test := t_1|t_2|\dots |t_m

where {t 1, . . . , t m} is a given set of m binary tests. Similarly, non-binary deci-
sion trees can be treated as nested CASE instructions.

Decision tree is one of the most favorite types of templates in data mining,
because of its simple representation and easy readability. Analogously to other
classification algorithms, there are two issues related to the decision tree ap-
proach, i.e., how to classify new unseen objects using decision tree and how to
construct an optimal decision tree for a given decision table.

In order to classify an unknown example, the information vector of this ex-
ample is tested against the decision tree. The path is traced from the root to a
leaf node that holds the class prediction for this example.

A decision tree is called consistent with a given decision table S if it properly
classifies all objects from S. A given decision table may have many consistent
decision trees. The main objective is to build a decision tree of high prediction ac-
curacy for a given decision table. This requirement is realized by a philosophical
principle called Occam’s Razor.

This principle thought up a long time ago by William Occam while shaving
states that the shortest hypothesis, or solution to a problem, should be the
one we should prefer (over longer, more complicated ones). This is one of the
fundamental tenets of the way western science works and has received much
debate and controversy. The specialized version of this principle applied to the
decision trees can be formulated as follows:

“The world is inherently simple. Therefore, the smallest decision tree that
is consistent with the samples is the one that is most likely to identify
unknown objects correctly.”

Unfortunately, the problem of searching for shortest tree for a decision table
has shown to be NP-hard. It means that the no computer algorithm can solve
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this in a feasible amount of time in the general case. Therefore, only heuristic
algorithms have been developed to find a good tree, usually very close to the
best.

In the next section, we summarize the most popular decision tree induction
methods.

7.1 Decision Tree Induction Methods

The basic heuristic for construction of decision tree (for example ID3 or later
C4.5 – see [124], [123], CART [15]) is based on the top-down recursive strategy
described as follows:

1. It starts with a tree with one node representing the whole training set of
objects.

2. If all objects have the same decision class, the node becomes leaf and is
labeled with this class.

3. Otherwise, the algorithm selects the best test tBest from the set of all possible
tests.

4. The current node is labeled by the selected test tBest and it is branched
accordingly to values of tBest. Also, the set of objects is partitioned and
assigned to new created nodes.

5. The algorithm uses the same processes (steps 2, 3, 4) recursively for each
new nodes to form the whole decision tree.

6. The partitioning process stops when either all examples in a current node
belong to the same class, or no test function has been selected in Step 3.

Developing decision tree induction methods (see [31], [123]) we should define
some heuristic measures (or heuristic quality functions) to estimate the quality
of tests. In tree induction process, the optimal test tBest with respect to the
function F is selected as the result of Step 3.

More precisely, let T = {t1, t2, . . . , tm} be a given set of all possible tests,
heuristic measure is a function

F : T × P(U) → R

where P(U) is the family of all subsets of U . The value F(t,X), where t ∈ T
and X ⊂ U , should estimate the chance that ti labels the root of the optimal
decision tree for X . Usually, the value F(t,X) depends on how the test t splits
the set of objects X .

Definition 22. A counting table w.r.t. the decision attribute dec for the set of
objects X ⊂ U – denoted by Count(X ; dec) – is the array of integers (x1, . . . , xd),
where xk = |X ∩DECk| for k ∈ {1, . . . , d}.

We will drop the decision attribute dec from the notation of counting table, just
for simplicity. Moreover, if the set of objects X is defined by a logical formula
φ, i.e.,

X = {u ∈ U : φ(u) = true}
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then the counting table for X can be denoted by Count(φ). For example, by
Count(age ∈ (25, 40)) we denote the counting table for the set of objects X =
{x ∈ U : age(x) ∈ (25, 40)}.

Any test t ∈ T defines a partition of X into disjoint subsets of objects
Xv1 , . . . , Xvnt

, where Vt = {v1, . . . , vnt} is the domain of test t and Xvi = {u ∈
X : t(u) = vi}. The value F(t,X) of an arbitrary heuristic measure F is defined
by counting tables Count(X ; dec), Count(Xv1 ; dec), . . . , Count(Xvnt

; dec).

7.1.1 Entropy Measure
This is one of the most well-known heuristic measures, and it has been used in
the famous C4.5 system for decision tree induction system [123].

This concept uses class-entropy as a criterion to evaluate the partition induced
by a test. Precisely, the class information entropy of a set X with counting table
(x1, . . . , xd), where x1 + · · ·+ xd = N , is defined by

Ent(X) = −
d∑

j=1

xj

N
log

xj

N
.

The class information entropy of the partition induced by a test t is defined by

E (t,X) =
nt∑
i=1

|Xvi |
|X | Ent (Xvi) ,

where {Xv1 , . . . , Xvnt
} is the partition of X defined by t.
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Fig. 24. Geometrical interpretation of the entropy measure. The set X consists of 15
objects, where Ent(X) = 0.971. The cut c2 is preferred by entropy measure.

In the decision tree induction process, the test tmin that maximizes the infor-
mation gain defined by

Gain(t,X) = Ent(X) − E (t,X)
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or minimizes the entropy function E(., X) is selected. There is a number of
methods based on information entropy theory reported in [17], [31], [21], [123].

Information gain measure tends to favor those tests with larger numbers of
outcomes. An obvious way to negate the bias or “greediness” of information gain
is to take into account the number of values of an attribute. A new, improved
calculation for test t over set of objects X is:

Gain Ratio(t,X) =
Gain(t,X)

IV (t)
,

where
IV (t) =

∑
(− log2 |Xi|/|X |)

Fig. 24 illustrates the entropy method on the set X containing 15 objects,
where Count(X) = (9, 6). Comparing two cuts c1 and c2, one can see that
c2 is intuitively better because each set of the induced partition has an almost
homogenous distribution. This observation is confirmed by the entropy measure.

7.1.2 Pruning Techniques
The overfitting is the phenomenon that a learning algorithm adapts so well to
a training set, that the random disturbances in the training set are included
in the model as meaningful. Consequently (as these disturbances do not reflect
the underlying distribution), the performance on the test set (with its own, but
definitively other, disturbances) will suffer from techniques that learn too well
[130].

This is also the case in decision tree approach. We want our decision tree to
generalise well, but unfortunately if we build a decision tree until all the training
data has been classified perfectly and all leaf nodes are reached, there is a chance
that we’ll have a lot of misclassifications when we try using it. In response to
the problem of overfitting nearly all modern decision tree algorithms adopt a
pruning strategy of some sort.

Many algorithms use a technique known as postpruning or backward pruning.
This essentially involves growing the tree from a dataset until all possible leaf
nodes have been reached (i.e., purity) and then removing particular substrees
(e.g., see “Reduced Error Pruning” method by Quinlan [124]). Studies have
shown that post-pruning will result in smaller and more accurate trees by up
to 25%. Among many pruning techniques developed and compared in several
papers, it has been found that there is not much variation in terms of their
performance (e.g., see Mingers [76] Esposito et al. [30]).

Various other pruning methods exist, including strategies that convert the tree
to rules before pruning. Recent work is involved to incorporate some overfitting-
prevention bias into the splitting part of the algorithm. One example of this is
based on the minimum-description length principle [127] that states that the
best hypothesis is the one that minimises length of encoding of the hypothesis
and data. This has been shown to produce accurate trees with small size (e.g.,
see Mehta et al. [71]).
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7.2 MD Algorithm

In Boolean reasoning approach to discretization, qualities of cuts were evaluated
by their discernibility properties. In this section, we present an application of
discernibility measure in induction of decision tree. This method of decision
tree induction is called the Maximal-Discernibility Algorithm, or shortly MD
algorithm.

MD algorithm uses discernibility measure to evaluate the quality of tests.
Intuitively, a pair of objects is said to be conflict if they belong to different
decision classes. An internal conflict of a set of objects X ⊂ U is defined by the
number of conflict pairs of objects from X . Let (n1, . . . , nd) be a counting table
of X , then conflict(X) can be computed by

conflict(X) =
∑
i<j

ninj .

If a test t determines a partition of a set of objects X into X1, X2, . . . , Xnt , then
discernibility measure for t is defined by

Disc(t,X) = conflict(X)−
nt∑
i=1

conflict(Xi). (49)

Thus the more pairs of objects are separated by the test t the larger is the
chance that t labels the root of the optimal decision tree for X .

MD algorithm is using two kinds of tests depending on attribute types. In
case of symbolic attributes aj ∈ A, test functions defined by sets of values, i.e.,

taj∈V (u) = 1 ⇐⇒ [aj (u) ∈ V ]

where V ⊂ Vaj , are considered. For numeric attributes ai ∈ A, only test functions
defined by cuts:

tai>c (u) = True ⇐⇒ [ai (u) ≤ c] ⇐⇒ [ai (u) ∈ (−∞; c〉)]

where c is a cut in Vai , are considered.
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Fig. 25. Geometrical interpretation of the discernibility measure
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Usually, decision tree induction algorithms are described as recursive
functions. Below we present the non-recursive version of MD algorithm (Algo-
rithm 6), which is longer but more convenient for further consideration. During
the construction, we additionally use some object sets to label nodes of the de-
cision tree. This third kind of labels will be removed at the end of construction
process.

Algorithm 6. MD algorithm for decision tree construction
begin1

Initialize a decision tree T with one node labeled by the set of all2

objects U ;
Q := [T]; // Initialize a FIFO queue Q containing T3

while Q is not empty do4

N := Q.head(); // Get the first element of the queue5

X := N.Label;6

if the major class of X is pure enough then7

N.Label := major class(X);8

else9

t := ChooseBestT est(X); N.Label := t;10

// Search for the best test of form ta∈V for V ⊂ Va

with respect to Disc(., X)
XL = {u ∈ X : t(u) = 0}; and XR = {u ∈ X : t(u) = 1};11

Create two successors of the current node NL and NR and12

label them by XL and XR;
Q.insert(NL); Q.insert(NR);13

// Insert NL and NR into Q
end14

end15

end16

In general, MD algorithm does not differ very much from other existing tree
induction methods. However, there are some specific details, e.g., avoiding of
overfitting (line 7), efficient searching for best tests (line 10) or creating soft
decision tree (line 12), that distinguish this method. We will discuss those issues
lately in the next sections.

7.3 Properties of the Discernibility Measure

In this section, we study the most important properties of discernibility measure
that result in efficiency of the process of searching for best tests as well as in
accuracy of the constructed tree.
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X

t

0 1

XL XR

(r1, ..., rd)

(n1, ..., nd)

(l1, ..., ld)

N = n1 + ... + nd

L = l1 + ... + ld R = r1 + ... + rd

Fig. 26. The partition of the set of objects U defined by a binary test

To simplify the notation, we will use following notations for binary tests:

– d – the number of decision classes;
– XL = {x ∈ X : t(x) = 0} and XR = {x ∈ U : t(x) = 1};
– Count(X) = (n1, . . . , nd) – the counting table for X ;
– Count(XL) = (l1, . . . , ld) and Count(XR) = (r1, . . . , rd) – the counting

tables for UL and UR (obviously nj = lj + rj for j ∈ {1, . . . , d});
– L =

∑d
j=1 lj, R =

∑d
j=1 rj , N =

∑d
i=1 nj = L+R – total numbers of objects

of XL, XR, X ;

Fig. 26 illustrates the binary partition made by a cut on an attribute.
With those notations the discernibility measure for binary tests can be also

computed as follows:

Disc(t,X) = conflict(X)− conflict(X1) − conflict(X2)

=
1
2

∑
i�=j

ninj −
1
2

∑
i�=j

lilj −
1
2

∑
i�=j

rirj

=
1
2

(
N2 −

d∑
i=1

n2
i

)
− 1

2

(
L2 −

d∑
i=1

l2i

)
− 1

2

(
R2 −

d∑
i=1

r2
i

)

=
1
2
(
N2 − L2 −R2

)
− 1

2

d∑
i=1

(n2
i − l2i − r2

i )

=
1
2
[
(L + R)2 − L2 −R2

]
− 1

2

d∑
i=1

[(li + ri)2 − l2i − r2
i ]

= LR−
d∑

i=1

liri
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One can show that in case of binary tests, the discernibility measure can be
also computed by

Disc(t,X) = LR−
d∑

i=1

liri (50)

=
d∑

i=1

li

d∑
i=1

ri −
d∑

i=1

liri

=
∑
i�=j

lirj (51)

Thus the discernibility measure can be calculated using either Equation (50) or
Equation (51). In the next sections, depending on the situation, we will use one
of those forms to calculate the discernibility measure.

7.3.1 Searching for Binary Partition of Symbolic Values
Let us consider a nonnumeric (symbolic) attribute a of a given decision table S.
Let P = (V1, V2) be a binary disjoint partition of Va. A pair of objects (x, y) is
said to be discerned by P if d(x) �= d(y) and either (a(x) ∈ V1) and (a(y) ∈ V2)
or (a(y) ∈ V1) and (a(x) ∈ V2).

For a fixed attribute a and an object set X ⊂ U , we define the discernibility
degree of a partition P = (V1, V2) as follows

Disca(P |X) = Disc(ta∈V1 , X)

=
∣∣{(x, y) ∈ X2 : x, y are discerned by P}

∣∣
In the MD algorithm as described above, we have considered the problem of
searching for optimal binary partition with respect to discernibility. This prob-
lem, called MD partition, can be described as follows:

MD-Partition:
input: A set of objects X and an symbolic attribute a.
output: A binary partition P of Va such that Disca (P |X) is maximal.

We will show that the MD-Partition problem is NP-hard with respect to
the size of Va. The proof will suggest some natural searching heuristics for the
optimal partition. We have applied those heuristics to search for best tests on
symbolic attributes in the MD algorithm.

To prove the NP-hardness of the MD-Partition problem we consider the
corresponding decision problem called the binary partition problem described as
follows:
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BinPart:
input: A value set V = {v1, . . . , vn}, two functions: s1, s2 : V → N

and a positive integer K.
question: Is there a binary partition of V into two disjoint subsets

P (V ) = {V1, V2} such that the discernibility degree of P defined
by

Disc (P ) =
∑

i∈V1,j∈V2

[s1 (i) · s2 (j) + s2 (i) · s1 (j)]

One can see that each instance of BinPart is a special case of MD-Partition.
Indeed, let us consider a decision table with two decision classes, i.e., Vdec = {1, 2}.
Assume that Va = {v1, . . . , vn}, we denote by s(vi) = (s1(vi), s2(vi)) the counting
table of the set Xvi = {x ∈ X : a(x) = vi}. In this case, according to Equation
(51), the discernibility degree of a partition P is expressed by

Disc (P |Z) = l1r2 + l2r1

=
∑
v∈V1

s1(v)
∑

w∈V2

s2(w) +
∑
v∈V1

s2(v)
∑

w∈V2

s1(w)

=
∑

v∈V1;w∈V2

[s1 (v) · s2 (w) + s2 (v) · s1 (w)]

Thus, if BinPart problem is NP-complete, then MD-Partition problem is NP
hard.

Theorem 19. The binary partition problem is NP-complete.

Proof: It is easy to see that the BinPart problem is in NP. The NP-completeness
of the BinPart problem can be shown by polynomial transformation from Set
Partition Problem (SPP), which is defined as the problem of checking whether
there is a partition of a given finite set of positive integers S = {n1, n2, . . . , nk}
into two disjoint subsets S1 and S2 such that

∑
i∈S1

i =
∑

j∈S2

j.

It is known that the SPP is NP-complete [35]. We will show that SPP is
polynomially transformable to BinPart. Let S = {n1, n2, . . . , nk} be an instance
of SPP. The corresponding instance of the BinPart problem is as follows:

– V = {1, 2, . . . , k};
– s0 (i) = s1 (i) = ni for i = 1, . . . , k;

– K = 1
2

(
k∑

i=1

ni

)2

.

One can see that for any partition P of the set Va into two disjoint subsets
V1 and V2 the discernibility degree of P can be expressed by:
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Disc (P ) =
∑

i∈V1;j∈V2

[s0(i) · s1(j) + s1(i) · s0(j)] =

=
∑

i∈V1;j∈V2

2ninj = 2 ·
∑
i∈V1

ni ·
∑
j∈V2

nj =

≤ 1
2

⎛⎝∑
i∈V1

ni +
∑
j∈V2

nj

⎞⎠2

=
1
2

(∑
i∈V

ni

)2

= K,

i.e., for any partition P we have the inequality Disc (P ) ≤ K and the equality
holds if, and only if

∑
i∈V1

ni =
∑

j∈V2

nj . Hence, P is a good partition of V (into

V1 and V2) for the BinPart problem iff it defines a good partition of S (into
S1 = {ni}i∈V1

and S2 = {nj}j∈V2
) for the SPP problem. Therefore, the BinPart

problem is NP-complete and the MD-Partition problem is NP hard. �

Now we are going to describe some approximate solutions for MD-Partition
problem, which can be treated as a 2-mean clustering problem over the set
Va = {v1, . . . , vm} of symbolic values, where distance between those values is
defined by discernibility measure. Let s(vi) = (n1(vi), n2(vi), . . . , nd(vi)) denote
the counting table of the set Xvi = {x ∈ X : a(x) = vi}. The distance between
two symbolic values v, w ∈ Va is determined as follows:

δdisc(v, w) = Disc(v, w) =
∑
i�=j

ni(v) · nj(w)

One can generalize the definition of distance function by

δdisc(V1, V2) =
∑

v∈V1,w∈V2

δdisc(v, w).

It is easy to observe that the distance function δdisc is additive and symmetric,
i.e.:

δdisc (V1 ∪ V2, V3) = δdisc (V1, V3) + δdisc (V2, V3) (52)
δdisc (V1, V2) = δdisc (V2, V1) (53)

for arbitrary sets of values V1, V2, V3.

Example 18. Consider a decision table with two symbolic attributes in Fig. 27
(left). The counting tables and distance graphs between values of those attributes
are presented in Fig. 27 (right).

We have proposed the following heuristics for MD-Partition problem:

1. The grouping by minimizing conflict algorithm starts with the most detailed
partition Pa = {{v1} , . . . , {vm}}. Similarly to agglomerative hierarchical
clustering algorithm, in every step the two nearest sets V1, V2 of Pa with
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A a b dec

u1 a1 b1 1

u2 a1 b2 1

u3 a2 b3 1

u4 a3 b1 1

u5 a1 b4 2

u6 a2 b2 2

u7 a2 b1 2

u8 a4 b2 2

u9 a3 b4 2

u10 a2 b5 2

dec = 1 dec = 2

a1 2 1
a2 1 3
a3 1 1
a4 0 1

dec = 1 dec = 2

b1 2 1
b2 1 2
b3 1 0
b4 0 2
b5 0 1
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Fig. 27. An exemplary decision table with two symbolic attributes

respect to the function δdisc (V1, V2) is selected and replaced by their union
set V = V1∪V2. Distances between sets in the partition Pa are also updated
according to Eqn. (52). The algorithm repeats this step until Pa contains
two sets only. An illustration of this algorithm is presented in Fig. 28.

2. The second technique is called grouping by maximizing discernibility. The
algorithm also starts with a family of singletons Pa = {{v1} , . . . , {vm}},
but first we look for two singletons with the largest discernibility degree to
create kernels of two groups; let us denote them by V1 = {v1} and V2 = {v2}.
For any symbolic value vi /∈ V1∪V2 we compare the distances Disc ({vi}, V1)
and Disc ({vi}, V2) and attach it to the group with a smaller discernibility
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Fig. 28. Illustration of grouping by minimizing conflict algorithm
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Fig. 29. Illustration of grouping by maximizing discernibility algorithm

degree for vi. This process ends when all the values in Va are drawn out. Fig.
29 presents an illustration of this method. For the considered example, both
grouping methods give the same results on each attribute, but it is not true
in general.

7.3.2 Incomplete Data
Now we consider a data table with incomplete value attributes. The problem is
how to guess unknown values in a data table to guarantee maximal discernibility
of objects in different decision classes.

The idea of grouping values proposed in the previous sections can be used
to solve this problem. We have shown how to extract patterns from data by
using discernibility of objects in different decision classes. Simultaneously, the
information about values in one group can be used to guess the unknown values.
Below we define the searching problem for unknown values in an incomplete
decision table.

The decision table S = (U,A ∪ {d}) is called “incomplete” if attributes in A
are defined as functions a : U → Va ∪ {∗} where for any u ∈ U by a(u) = ∗ we
mean an unknown value of the attribute a. All values different from ∗ are called
fixed values.

We say that a pair of objects x, y ∈ U is inconsistent if d(x) �= d(y) ∧
∀a∈A[a(x) = ∗ ∨ a(y) = ∗ ∨ a(x) = a(y)]. We denote by Conflict(S) the number
of inconsistent pairs of objects in the decision table S.

The problem is to search for possible fixed values which can be substituted for
the ∗ value in the table S in such a way that the number of conflicts Conflict

(
S

′
)

in the new table S
′
(obtained by changing entries ∗ in table S into fixed values)

is minimal.
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The main idea is to group values in the table S so that discernibility of objects
in different decision classes is maximized. Then we replace ∗ by a value depending
on fixed values belonging to the same group.

To group attribute values we can use heuristics proposed in the previous sec-
tions. We assume that all the unknown values of attributes in A are pairwise
different and different from the fixed values. Hence, we can label the unknown
values by distinct indices before applying algorithms proposed in the previous
sections. This assumption allows to create the discernibility matrix for an in-
complete table as in the case of complete tables and we can then use the Global
Partition method presented in Sect. 7.3 for grouping unknown values.

The function Disc(V1, V2) can also be computed for all pairs of subsets which
may contain unknown values. Hence, we can apply both heuristics of Dividing
and Conquer methods for grouping unknown values.

After the grouping step, we assign to the unknown value one (or all) of the
fixed values in the same group which contains the unknown one. If there is no
fixed value in the group we choose an arbitrary value (or all possible values)
from an attribute domain, that does not belong to other groups. If such values
do not exist either, we can say that these unknown values have no influence on
discernibility in a decision table and we can assign to them an arbitrary value
from the domain.

7.3.3 Searching for Cuts on Numeric Attributes
In this section, we discuss some properties of the best cuts with respect to
discernibility measure. Let us fix a continuous attribute a and, for simplification,
we will denote the discernibility measure of a cut c on the attribute a by Disc(c)
instead of Disc(a, c).

Let us consider two cuts cL < cR on attribute a. The following formula shows
how to compute the difference between the discernibility measures of cL and cR

using information about class distribution in intervals defined by these cuts.

Lemma 2. The following equation holds:

Disc(cR)−Disc(cL) =
d∑

i=1

⎡⎣(Ri − Li)
∑
j �=i

Mj

⎤⎦ (54)

where (L1, . . . , Ld), (M1, . . . ,Md) and (R1, . . . , Rd) are the counting tables of
intervals (−∞; cL), [cL; cR) and [cR;∞), respectively (see Fig. 30).

c cL R

L1 L2 ... Ld 1 2 ... dR RR1 2 ... dM M M

Fig. 30. The counting tables defined by cuts cL, cR
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Proof: According to Eqn. (50) we have

Disc(cL) =
d∑

i=1

Li

d∑
i=1

(Mi + Ri) −
d∑

i=1

Li(Mi + Ri)

=
d∑

i=1

Li

d∑
i=1

Mi +
d∑

i=1

Li

d∑
i=1

Ri −
d∑

i=1

Li(Mi + Ri)

Analogously

Disc(cR) =
d∑

i=1

(Li + Mi)
d∑

i=1

Ri −
d∑

i=1

(Li + Mi)Ri

=
d∑

i=1

Li

d∑
i=1

Ri +
d∑

i=1

Mi

d∑
i=1

Ri −
d∑

i=1

Ri(Mi + Li)

Hence,

Disc(cR) −Disc(cL) =
d∑

i=1

Mi

d∑
i=1

(Ri − Li) −
d∑

i=1

Mi(Ri − Li)

=
d∑

i,j=1

Mi(Rj − Lj) −
d∑

i=1

Mi(Ri − Li)

Simplifying the last formula we obtain (54). �

7.3.4 Boundary Cuts
Let Ca = {c1, . . . , cN} be a set of consecutive candidate cuts on attribute a such
that c1 < c2 < · · · < cN .

Definition 23. The cut ci ∈ Ca, where 1 < i < N , is called the boundary
cut if there exist at least two such objects u1,u2 ∈ U that a(u1) ∈ [ci−1, ci),
a(u2) ∈ [ci, ci+1) and dec(u1) �= dec(u2).

The notion of boundary cut has been introduced by Fayyad et al. [31], who
showed that best cuts with respect to entropy measure can be found among
boundary cuts. We will show the similar result for discernibility measure, i.e., it
is enough to restrict the search to the set of boundary cuts.

Theorem 20. The cut cBest maximizing the function Disc(a, c) can be found
among boundary cuts.

Proof: Assume that ca and cb are consecutive boundary cuts. Then the interval
[ca, cb) consists of objects from one decision class, say CLASSi. Let (L1, . . . , Ld)
and (R1, . . . , Rd) are the counting tables of intervals (−∞; ca) and [ca;∞), re-
spectively
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For arbitrary cuts cL and cR such that ca ≤ cL < cR ≤ cb. According to the
notation in Fig. 30, we have Mi �= 0 and ∀j �=iMj = 0. Then (54) has a form

Disc(cR)−Disc(cL) = Mi

∑
j �=i

(Rj − Lj).

Thus, function Disc(c) is monotone within the interval [ca, cb) because
∑

j �=i

(Rj − Lj) is constant for all sub intervals of [ca, cb). More precisely, for any cut
c ∈ [ca, cb)

Disc(c) = Disc(ca) + A · x
where A =

∑
j �=i(Rj − Lj) and x > 0 is the number of objects lying between ca

and c. �
Theorem 20 makes it possible to look for optimal cuts among boundary cuts
only. This fact allows us to save time and space in the MD-heuristic because one
can remove all non-boundary points from the set of candidate cuts.

7.4 The Properties of MD Decision Trees

The decision trees, which are built by MD-heuristics (using discernibility mea-
sures), are called MD decision trees. In this section, we study some properties of
MD decision tress.

A real number vi ∈ a(U) is called single value of an attribute a if there is
exactly one object u ∈ U such that a(u) = vi. The cut (a; c) ∈ CutS(a) is called
the single cut if c is lying between two single values vi and vi+1. We have the
following theorem related to single cuts:

Theorem 21. In case of decision tables with two decision classes, any single
cut ci, which is a local maximum of the function Disc, resolves more than a half
of conflicts in the decision table, i.e.

Disc (ci) ≥
1
2
· conflict (S) .

Proof: Let ci−1 and ci+1 be the nearest neighboring cuts to ci (from the left
and the right hand sides). The cut ci is a local maximum of the function W if
and only if

Disc (ci) > max{Disc(ci−1), Disc(ci+1)}.
Because ci is a single cut, one can assume that there are only two objects u

and v such that

a(u) ∈ (ci−1; ci) and a(v) ∈ (ci; ci+1).

Theorem 20 allows us to conclude that ci is a boundary cut. One can assume,
without loss of generality, u ∈ CLASS1 and v ∈ CLASS2.

Let (L1, L2) and (R1, R2) be counting tables of intervals (−∞; ci) and (ci;∞).
We have

Disc(ci) = L1R2 + L2R1.
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From definition of conflict measure, we have

conflict (U) = (L1 + R1)(L2 + R2).

Because a(u) ∈ (ci−1; ci) and u ∈ CLASS1, hence after applying Lemma 2
we have

Disc (ci)−Disc (ci−1) = R2 − L2.

Similarly, we have

Disc (ci+1) −Disc (ci) = R1 − L1;

Then we have the following inequality:

(R1 − L1)(R2 − L2) = [Disc (ci) −Disc (ci−1)][Disc (ci+1) −Disc (ci)] ≤ 0.

Thus

(R1 − L1)(R2 − L2) = R1R2 + L1L2 − L1R2 −R1L2 ≤ 0
⇔ R1R2 + L1L2 + L1R2 + R1L2 ≤ 2(L1R2 + R1L2)
⇔ (L1 + R1)(L2 + R2) ≤ 2(L1R2 + R1L2)
⇔ conflict(S) ≤ 2W (ci)

Therefore, Disc (ci) ≥ 1
2 · conflict (S), what completes the proof. �

The single cuts defining local maxima w.r.t. the discernibility measure can be
found when (for example) the feature a : U → R is a “1 − 1′′ mapping. If the
original attributes of a given decision table are not “1− 1′′ mapping, we can try
to create new features by taking linear combination of the existing attributes.
The cuts on new attributes being linear combinations of the existing ones are
called hyperplanes.

This fact will be useful in the proof of an upper-bound on the height of decision
tree in the following part.

Our heuristic method aims to minimize the conflict function using possibly
small number of cuts. The main subject of decision tree algorithms is to minimize
the number of leaves (or rules) in decision tree. In this section we will show that
the height of the decision tree generated by MD algorithm is quite small.

Theorem 22. Let a cut ci satisfy conditions of Theorem 21 and let ci divide S
into two decision tables S1 = (U1, A ∪ {d}) and S2 = (U2, A ∪ {d}) such that

U1 = {u ∈ U : a (u) < ci} and U2 = {u ∈ U : a (u) > ci} ,

then conflict (S1) + conflict (S2) ≤ 1
2conflict (S).

Proof: This fact is obtained directly from Theorem 21 and the observation that

conflict (S1) + conflict (S2) + Disc (ci) = conflict (S)

for any cut ci. �
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Theorem 23. In case of decision table with two decision classes and n objects,
the height of the MD decision tree using hyperplanes is not larger than 2 logn−1.

Proof: Let conflict (h) be a sum of conflict (Nh) for all nodes Nh on the level
h. From Theorem 22 we have

conflict (h) ≥ 2conflict (h + 1) .

Let n be the number of objects in given decision table and n1, n2 the numbers
of decision classes (we assumed that there are only two decision classes). From
Proposition 2 we can evaluate the conflict of the root of generated decision tree
by:

conflict (0) = conflict (A) = n1n2 ≤
(
n1 + n2

2

)2

=
n2

4
.

Let h (T) be the height of the decision tree T, we have conflict (h (T)) = 0.
Therefore:

conflict (0) ≥ 2h(T)−1 ⇒

h (T) ≤ log2 (conflict (0)) + 1 ≤ log2

(
n2

4

)
+ 1 = 2 logn− 1

�
Let us assume that any internal node N of the constructed decision tree satisfies
the condition:

conflict (NL) = conflict (NR)

or more generally:

max (conflict (NL) , conflict (NR)) ≤ 1
4
conflict (N) ,

where NL, NR are left and right sons of N . In a similar way we can prove that

h (T) ≤ log4 (conflict (A)) + 1 ≤ log4

(
n2

4

)
+ 1 = logn.

7.5 The Accuracy of MD-Algorithm

Experiments for classification methods have been carried over decision tables
using two techniques called ”train-and-test” and “n-fold-cross-validation”. In
Table 17 we present some experimental results obtained by testing the proposed
methods for classification quality on well-known data tables from the “UC Irvine
Machine Learning repository”6 and execution times. Similar results obtained by
alternative methods are reported in [33]. It is interesting to compare those results
with regard to both classification quality and execution time.
6 http://www1.ics.uci.edu/∼mlearn/MLRepository.html
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Table 17. The quality comparison between decision tree methods. MD: MD-heuristics;
MD-G: MD-heuristics with symbolic value partition.

Names of Classification accuracies
Tables S-ID3 C4.5 MD MD-G

Australian 78.26 85.36 83.69 84.49

Breast (L) 62.07 71.00 69.95 69.95

Diabetes 66.23 70.84 71.09 76.17

Glass 62.79 65.89 66.41 69.79

Heart 77.78 77.04 77.04 81.11

Iris 96.67 94.67 95.33 96.67

Lympho 73.33 77.01 71.93 82.02

Monk-1 81.25 75.70 100 93.05

Monk-2 69.91 65.00 99.07 99.07

Monk-3 90.28 97.20 93.51 94.00

Soybean 100 95.56 100 100

TicTacToe 84.38 84.02 97.7 97.70

Average 78.58 79.94 85.48 87.00

7.6 Bibliographical Notes

The MD-algorithm for decision tree (i.e., using discernibility measure to con-
struct decision tree from decision table) and properties of such decision trees
was described in [92]. The idea of symbolic value grouping was presented in
[103].

7.6.1 Other Heuristic Measures
In next sections we recall some other well-known measures for decision tree
induction. To simplify the notation, we will consider only binary tests with values
from {0, 1}. In this case, we will use the same notations as in Sect. 7.3 (page
434).

1. Statistical test: Statistical tests are applied to check the probabilistic inde-
pendence between the object partition defined by a test t. The independence
degree is estimated by the χ2 test given by

χ2(t,X) =
d∑

j=1

(lj − E(XL,j))
2

E(XL,j)
+

d∑
j=1

(rj − E(XR,j))
2

E(XR,j)
,

where E(XL,j) = L ·
nj

N
and E(XR,j) = R ·

nj

N
are the expected numbers of

objects from jth class which belong to XL and and XR, respectively.
Intuitively, if the partition defined by t does not depend on the partition

defined by the decision attribute dec then one can expect that counting
tables for XL and XR are proportional to the counting table of X , that is

(l1, . . . , ld) '
(
L
n1

N
, . . . , L

nd

N

)
and (r1, . . . , rd) '

(
R
n1

N
, . . . , R

nd

N

)
,
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Fig. 31. Geometrical interpretation of χ2 method

thus we have χ2(c) = 0. In the opposite case if the test t properly separates
objects from different decision classes, the value of χ2 test for t is maximal.
Fig. 31 illustrates the χ2 method on the set X containing 15 objects, where
Count(X) = (9, 6). Comparing two cuts c1 and c2, one can see that the
more counting tables of XL and XR from the counting table of X differ, the
larger is the value of χ2 test.

2. Gini’s index:

Gini(t,X) =
L

N

(
1 −
∑ l2i

L2

)
+

R

N

(
1 −
∑ r2

i

R2

)
3. Sum-Minority:

Sum Minority (t,X) = min
i=1,...,d

{li} + min
i=1,...,d

{ri}

4. Max-Minority:

Max Minority (t,X) = max
{

min
i=1,...,d

{li}, min
i=1,...,d

{ri}
}

5. Sum-Impurity:

Sum impurity (t,X) =
d∑

i=1

li · (i− avgL)2 +
d∑

i=1

ri · (i− avgR)2

where

avgL =
∑d

i=1 i · li
L

and avgR =
∑d

i=1 i · ri

R
are averages of decision values of objects of the left set and the right set of
the partition defined by the test t (respectively). Usually, this measure is
applied for decision tables with two decision classes. In fact, Sum-Impurity
is a sum of variations of both sides of t and it is minimal if t separates the
set of objects correctly.
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8 Approximate Boolean Reasoning Approach to Feature
Extraction Problem

We have presented so far some applications of rough sets and ABR in many
issues of data mining like feature selection, rule generation, discretization, and
decision tree generation. Discretization of numeric attributes can be treated
not only as the data reduction process (in which some of original attributes are
replaced by the discretized ones), but also as the feature extraction method since
it defines a new set of attributes. In this section, we consider some extensions of
discretization methods in the mean of feature extraction problem. Particularly,
we consider the problem of searching for new features defined either by linear
combinations of attributes (hyperplanes) or by sets of symbolic values.

8.1 Grouping of Symbolic Values

We have considered the real value attribute discretization problem as a prob-
lem of searching for a partition of real values into intervals. The efficiency of
discretization algorithms is based on the existence of the natural linear order
“<” in the real axis IR. In case of symbolic value attributes (i.e., without any
pre-assumed order in the value sets of attributes) the problem of searching for
partitions of value sets into a “small” number of subsets is more complicated
than for continuous attributes.

Once again, we will apply the Boolean reasoning approach to construct a
partition of symbolic value sets into small number of subsets.

Let us consider a decision table S = (U,A ∪ {d}). By grouping of symbolic
values from the domain Vai of an attribute ai ∈ A we mean an arbitrary mapping
P : Vai → {1, . . . ,mi}. Two values x, y ∈ Vai are in the same group if P (x) =
P (y). One can see that the notion of partition of attribute domain is a generalized
concept of discretization and it can be used for both continuous and symbolic
attributes. Intuitively, the mapping P : Vai → {1, . . . ,mi} defines a partition of
Vai into disjoint subsets of values as follows:

Vai = V1(P ) ∪ · · · ∪ Vmi(P ),

where Vj(P ) = {v ∈ Vai : P (v) = j}.
Thus any grouping of symbolic values P : Vai → {1, . . . ,mi} defines a new

attribute ai|P = P ◦ ai : U → {1, . . . ,mi} where

ai|P (u) = P (ai (u))

for any object u ∈ U . By rank of a partition P on ai we denote the number of
non-empty subsets occurring in its partition, i.e.,

rank (P ) = |P (Vai)|

Similarly to the discretization problem, grouping of symbolic values can reduce
some superfluous data but it is also associated with a loss of some significant
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information. We are interested in those groupings which guarantee the high
quality of classification.

Let B ⊂ A be an arbitrary subset of attributes. A family of partitions {Pa}a∈B

on B is called B−consistent if and only if it maintains the discernibility relation
DISC(B, d) between objects, i.e., for any u, v ∈ U ,

[d (u) �= d (v) ∧ infB(u) �= infB(v)] =⇒ ∃a∈B [Pa (a (u)) �= Pa (a (v))] (55)

We consider the following optimization problem called the symbolic value parti-
tion problem:

Symbolic Value Partition Problem:
input: a given decision table S = (U,A ∪ {d}), and a set B ⊆ A of

nominal attributes in S.
output: minimal B−consistent family of partitions (i.e., B-consistent

family {Pa}a∈B with the minimal value of
∑

a∈B rank (Pa)).

This concept is useful when we want to reduce attribute domains with large
cardinalities. The discretization problem can be derived from the partition prob-
lem by adding the monotonicity condition for the family {Pa}a∈A such that

∀v1,v2∈Va(v1 ≤ v2) ⇒ (Pa (v1) ≤ Pa (v2)).

In the next sections, we present three solutions for this problem, namely the
local partition method, the global partition method and the “divide and conquer”
method. The first approach is based on grouping the values of each attribute
independently whereas the second approach is based on grouping of attribute
values simultaneously for all attributes. The third method is similar to the de-
cision tree techniques: the original data table is divided into two subtables by
selecting the “best binary partition of some attribute domain” and this process
is continued for all subtables until some stop criterion is satisfied.

8.1.1 Local Partition
The local partition strategy is very simple. For any fixed attribute a ∈ A, we
search for a partition Pa that preserves the consistency condition (55) for the
attribute a (i.e., B = {a}).

For any partition Pa the equivalence relation ≈Pa is defined by:

v1 ≈Pa v2 ⇔ Pa (v1) = Pa (v2)

for all v1, v2 ∈ Va. We consider the relation UNIa defined on Va as follows:

v1UNIav2 ⇔ ∀u,u′∈U (a(u) = v1 ∧ a(u′) = v2) ⇒ d(u) = d(u′). (56)

It is obvious that the relation UNIa defined by Eqn. (56) is an equivalence rela-
tion. One can show [103] that the equivalence relation UNIa defines a minimal
a−consistent partition on a, i.e., if Pa is a-consistent then ≈Pa⊆ UNIa.
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8.1.2 Divide and Conquer Approach to Partition
A partition of symbolic values can be also obtained from MD-decision tree al-
gorithm (see Sect. 7). Assume that T is the decision tree constructed by MD-
decision tree method for decision table S = (U,A ∪ {d}).

For any symbolic attribute a ∈ A, let P1, P2, . . . , Pk be the binary partitions
on Va which are presented in T. The partition Pa of symbolic values on Va can
be defined as follows:

Pa(v) = Pa(v′) ⇔ ∀iPi(v) = Pi(v′)

This method has been implemented in RSES system7.

8.1.3 Global Partition Method Based on ABR
In this section, we present the ABR approach to the symbolic value partition
problem. Let us describe the basic steps of this solution:

Problem modeling: We can encode the problem as follows:
Let us consider the discernibility matrix M (S) = [mi,j ]

n
i,j=1 (see [143]) of

the decision table S, where mi,j = {a ∈ A : a (ui) �= a (uj)} is the set of
attributes discerning two objects ui,uj . Observe that if we want to discern
an object ui from another object uj we need to preserve one of the attributes
in mi,j . To put it more precisely: for any two objects ui,uj there exists an
attribute a ∈ mi,j such that the values a (ui) , a (uj) are discerned by Pa.

Hence, instead of cuts as in the case of continuous values (defined by pairs
(ai, cj)), we consider boolean variables corresponding to triples (ai, v, v

′)
called constraints, where ai ∈ A for i = 1, . . . , k and v, v′ ∈ Vai . Obviously
two tripes (ai, v, v

′) and (ai, v
′, v) represents the same constraint and are

treated as identical.
The Boolean function that encodes this problem is constructed as follows:

fS =
∏

ui,uj ∈ U :
dec(ui) �= dec(uj)

ψi,j , (57)

where
ψi,j =

∑
a∈A

(a, a(ui), a(uj)).

Development: Searching for prime implicants;
We can build a new decision table S+ = (U+, A+ ∪ {d+}) assuming U+ =
U∗; d+ = d∗ and A+ = {(a, v1, v2) : (a ∈ A) ∧ (v1, v2 ∈ Va)}. Once again,
the greedy heuristic can be applied to A+ to search for a minimal set of
constraints discerning all pairs of objects in different decision classes.

7 Rough Set Exploration System: http://logic.mimuw.edu.pl/∼rses/
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Reasoning: Unlike previous applications of Boolean reasoning approach, it is
not trivial to decode the result of the previous step to obtain a direct solution
for the symbolic partition problem. The minimal (or semi-minimal) prime
implicant of a Boolean function fS (Eqn. (57)) describes the minimal set of
constraints for the target partition. Thus the problem is how to convert the
minimal set of constraints into a low rank partition.

Let us notice that our problem can be solved by efficient heuristics of
“graph k−colorability” problem which is formulated as a problem of checking
whether, for a given graph G = (V,E) and an integer k, there exists a
function f : V → {1, . . . , k} such that f (v) �= f (v′) whenever (v, v′) ∈ E.

This graph k−colorability problem is solvable in polynomial time for
k = 2, but is NP-complete for any k ≥ 3. However, similarly to the dis-
cretization problem, some efficient heuristic searching for the optimal graph
coloring determining optimal partitions of attribute value sets can be ap-
plied.

For any attribute ai in a semi-minimal set X of constraints returned from
the above heuristic we construct a graph Γai = 〈Vai ,Eai〉, where Eai is the
set of all constraints of the attribute ai in X . Any coloring of all the graphs
Γai defines an A-consistent partition of value sets. Hence, heuristic searching
for minimal graph coloring returns also sub-optimal partitions of attribute
value sets.

The corresponding boolean formula has O(knl2) variables and O(n2) clauses,
where l is the maximal value of card(Va) for a ∈ A. When prime implicants of
boolean formula have been constructed, a heuristic for graph coloring should be
applied to generate new features.

Example 19. Let us consider the decision table presented in Fig. 32 and the
reduced form of its discernibility matrix.

Firstly, we have to find a shortest prime implicant of the Boolean function
fS with boolean variables of the form av2

v1
(corresponding to the constraints

(a, v1, v2)). For the considered example, the minimal prime implicant encodes
the following set of constraints:

{aa1
a2
,aa2

a3
,aa1

a4
,aa3

a4
,ba1

a4
,ba2

a4
,ba2

a3
,ba1

a3
,ba3

a5
}

and it is represented by graphs of constraints for each attribute (Fig. 32).
Next we apply a heuristic to color vertices of those graphs as it is shown in

Fig. 32. The colors are corresponding to the partitions:

Pa (a1) = Pa (a3) = 1; Pa (a2) = Pa (a4) = 2;
Pb (b1) = Pb (b2) = Pb (b5) = 1;Pb (b3) = Pb (b4) = 2

and at the same time one can construct the new decision table (see Fig. 32). The
following set of decision rules can be derived from the table SP :
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S a b d

u1 a1 b1 0

u2 a1 b2 0

u3 a2 b3 0

u4 a3 b1 0

u5 a1 b4 1

u6 a2 b2 1

u7 a2 b1 1

u8 a4 b2 1

u9 a3 b4 1

u10 a2 b5 1

�

M (S) u1 u2 u3 u4

u5 bb1
b4

bb2
b4

aa1
a2 , bb3

b4
aa1

a3 , bb1
b4

u6 aa1
a2 , bb1

b2
aa1

a2 bb2
b3

aa2
a3 , bb1

b2

u7 aa1
a2 aa1

a2 , bb1
b2

bb1
b3

aa2
a3

u8 aa1
a4 , bb1

b2
aa1

a4 aa2
a4 , bb2

b3
aa3

a4 , bb1
b2

u9 aa1
a3 , bb1

b4
aa1

a3 , bb2
b4

aa2
a3 , bb3

b4
bb1

b4

u10 aa1
a2 , bb1

b5
aa1

a2 , bb2
b5

bb3
b5

aa2
a3 , bb1

b5

aPa bPb d

1 1 0

2 2 0

1 2 1

2 1 1

�
�

� �

��
�

�
�� �

�
�

�� �
�

�
� �a1

a3

a2

a4
b5

b1 b2

b3

b4

�
�
��

�
�

�
�

��

�
�
�
�
��

�
�

�
�

��a
b

�

aa1
a2 · aa2

a3 · aa1
a4 · aa3

a4 · ba1
a4 · ba2

a4 · ba2
a3 · ba1

a3 · ba3
a5

�

Pa (a1) = Pa (a3) = 1; Pa (a2) = Pa (a4) = 2

Pb (b1) = Pb (b2) = Pb (b5) = 1; Pb (b3) = Pb (b4) = 2

Fig. 32. The decision table and the corresponding discernibility matrix. Coloring of
attribute value graphs and the reduced table.

if a(u) ∈ {a1, a3} and b(u) ∈ {b1, b2, b5} then d = 0
(supported by u1,u2,u4)

if a(u) ∈ {a2, a4} and b(u) ∈ {b3, b4} then d = 0
(supported by u3)

if a(u) ∈ {a1, a3} and b(u) ∈ {b3, b4} then d = 1
(supported by u5,u9)

if a(u) ∈ {a2, a4} and b(u) ∈ {b1, b2, b5} then d = 1
(supported by u6,u7,u8,u10)

8.2 Searching for New Features Defined by Oblique Hyperplanes

In Sect. 6, we have introduced the optimal discretization problem as the problem
of searching for the minimal set of cuts. Every cut (a, c) on an attribute a can be
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interpreted as a linear (k − 1)-dimensional surface that divides the affine space
IRk into two half-spaces.

In this section, we consider the problem of searching for the optimal set of
oblique hyperplanes which is a generalization of the problem of searching for the
minimal set of cuts.

Let S = (U,A ∪ {dec}) be a decision table where U = {u1, . . . ,un}, A =
{a1, . . . , ak}, ai : U → IR is a real function from universe U for any i ∈ {1, . . . , k}
and d : U → {1, . . . , r} is a decision.

Any set of objects described by real value attributes a1, . . . , ak ∈ A can be
treated as a set of points in k-dimensional real affine space IRk. In fact, the
object ui ∈ U is represented by the point

Pi = (a1(ui), a2(ui), . . . , ak(ui)) for i ∈ {1, 2, . . . , n}.

Any hyperplane can be defined as a set of points by the linear equation

H =
{
x ∈IRk : L (x) = 0

}
,

where L : IRk → IR is a given linear function defined by

L (x1, . . . , xk) =
k∑

i=1

αi · xi + α0.

Any hyperplane H defined by a linear function L divides the space IRk into
the left half-space HL and the right half-space HR of H by

HL =
{
x ∈IRk : L(x) < 0

}
and

HR =
{
x ∈IRk : L(x) > 0

}
.

We say that the hyperplane H discerns a pair of objects ui,uj if and only if the
points Pi, Pj corresponding to ui,uj, respectively, are in different half-spaces of
the hyperplane H. This condition is expressed by:

L (ui) · L (uj) < 0.

Any hyperplane H defines a new feature (attribute) aH : U → {0, 1} by

aH (u) =
{

0 if L (u) < 0
1 if L (u) ≥ 0

(aH is the characteristic function of the right half-space HR).
The discretization concept defined by cuts (attribute-value pairs) can be

generalized by using oblique hyperplanes. In fact, normal cuts are the spe-
cial hyperplanes which are orthogonal (parallel) to axes. A set of hyperplanes
H = {H1, . . . ,Hm} is said to be compatible with a given decision table S =
(U,A ∪ {dec}) if and only if for any pair of objects ui,uj ∈ U such that dec(ui) �=
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dec(uj) there exists a hyperplane H ∈ H discerning ui and uj whenever infA(ui)
�= infA(uj)

In this section, we consider the problem of searching for minimal compatible
set of hyperplanes.

Similarly to the problems of optimal discretization and optimal symbolic value
partition, this problem can be solved by the Boolean reasoning approach. The
idea is as following:

– boolean variables: each candidate hyperplane H is associated with a
boolean variable vH.

– Encoding Boolean function:

f =
∏

ui,uj ∈ U :
dec(ui) �= dec(uj)

∑
H discerns ui,uj

vH

All searching strategies as well as heuristic measures for the optimal discretiza-
tion problem can be applied to the corresponding problem for hyperplane. Un-
fortunately, the problem of searching for the best hyperplane with respect to a
given heuristic measure usually shows to be very hard. The main difficulty is
caused by the large number, i.e., O

(
nk
)
, of possible candidate hyperlanes. For

example, Heath [47] has shown that the problem of searching for the hyperplane
with minimal energy with respect to Sum-Minority measure is NP-hard.

8.2.1 Hyperplane Searching Methods
Usually, because of the high complexity, the local search strategy – using decision
tree as a data structure – is employed to extract a set of hyperplanes from data.
In this section, we put a special emphasis on the problem of searching for the
best single hyperplane.

Let us mention three approximate solutions of this problem: the simulated an-
nealing based method [47], OC1 method [78] and genetic algorithm based method
[82].

Simulated annealing based method: Heath et al. [47] have presented an interesting
technique by applying the notion of annealing process8 in material sciences. In
previous section, we presented some heuristic measures for partitions of object
set defined by cuts or symbolic values. We can use one of those measures to
define the energy of hyperplanes in such a way that the energy of the optimal
hyperpane is minimal.

The simulated annealing algorithm starts with randomly initial hyperplane,
because the choice of the first hyperplane is not important for this method.
In particular, one can choose the hyperplane passing through the points where

8 anneal: to make (as glass or steel) less brittle by subjecting to heat and then cooling.
(according to Webster Dictionary).
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xi = 1 and all other xj = 0, for each dimension i. This hyperplane is defined by
the linear equation:

x1 + x2 + · · ·+ xk − 1 = 0,

i.e., αi = 1 for i = 1, . . . , k and α0 = −1.
Next, the perturbation process of the hyperplane H is repeated until some

stop criteria hold. The perturbation algorithm is based on random picking of
one coefficient αi and adding to it a uniformly chosen random variable in the
range [−0.5, 0.5). The energy of the new hyperplane and the change of energy
ΔE should be computed.

If ΔE < 0, then the energy has decreased and the new hyperplane becomes
the current hyperplane. In general, the probability of replacing the current hy-
perplane by the new hyperplane is defined by

P =

{
1 if ΔE < 0
e

−ΔE
T otherwise,

where T is a temperature of the system (in practice the temperature of the
system can be given by any decreasing function with respect to the number of
iterations). Once the probability described above is larger than some threshold
we replace the current hyperplane by the new hyperplane.

The process will be continued until keeping the hyperplane with the lowest
energy seen so far at the current state (i.e., if the energy of the system does not
change for a number of iterations).

OC1 method: Murthy et al. [78] proposed another method called OC1 to search
for hyperplanes. This method combines the Heath’s randomize strategy with the
decision tree method proposed by Breiman et al. [15]. This method also starts
with an arbitrary hyperplane H defined by linear function

L (x1, . . . , xk) =
k∑

i=1

αi · xi + α0

and next it perturbs the coefficients of H one at a time.
If we consider the coefficient αm as a variable, and all other coefficients as

constants then we can define a linear projection pm of any object uj onto the
the real axis as follows:

pm(uj) =
αmam(uj) − L (uj)

am(uj)

(the function pm does not depend on coefficient αm). One can note that the
object uj is above H if αm > pm(ui), and below otherwise. By fixing the values
of all other coefficients we can obtain n constraints on the value of αm defined
by pm(u1), pm(u2), . . . , pm(un) (assuming no degeneracies). Let α∗

m be the best
univariate split point (with respect to the impurity measure) of those constraints.
One can obtain a new hyperplane by changing αm to α∗

m.
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Murthy at al [78] proposed different strategies of deciding the order of coef-
ficient perturbation, but he has observed that the perturbation algorithm stops
when the hyperplane reaches a local minimum. In such situation OC1 tries to
jump out of local minima by using some randomization strategies.

8.2.2 Genetic Algorithm Based Method for Hyperplanes
A general method of searching for the optimal set of hyperplanes with respect to
an arbitrary measure was proposed in [93], [82]. This method was based on evo-
lution strategy and the main problem was related to chromosome representation
of hyperplanes. The representation scheme should be efficient, i.e., it should rep-
resent different hyperplanes using as small number of bits as possible. Moreover,
the complexity of the fitness function should be taken into account.

Algorithm 7. Searching for hyperplanes
begin1

Initialize a new table B = (U, B ∪ {d}) such that B = ∅;2

while ∂B = ∂S do3

// //Search for the best hyperplane

for i := 1 to k do4

Search for the best hyperplane Hi attached to the axis xi using5

genetic algorithm;
end6

H := Best hyperplane from the set {H1, H2, . . . , Hk};7

B := B ∪ {TestH};8

end9

end10

In the presented above algorithm, the main effort should concentrate on
searching for the best hyperplane attached to each of axes. Let us describe the
GA-based method for this problem, assuming that we are searching for hyper-
planes attached to x1.

Chromosomes : Let us fixe an integer b. In each two-dimensional plane L(x1, xi)
we select 2b vectors vi

1, v
i
2, . . . , v

i
2b of the form:

vi
j =

[
αi

j , 0, . . . , 0,
i-th position

1 , 0, . . . , 0

]
for i = 2, . . . , k and j = 1, . . . , 2b

These vectors, which are not parallel to x1, can be selected by one of the
following methods:

1. Random choice of 2b values: αi
1, α

i
2, . . . , α

i
2b .

2. The values αi
1, α

i
2, . . . , α

i
2b are chosen in such a way that all angles between

successive vectors are equal, i.e., αi
j = cot

(
j π

1+2l

)
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3. The sequence αi
1, α

i
2, . . . , α

i
2b is an arithmetical progression (e.g., αi

j = j −
2l−1).

Any chromosome is a bit vector of the length b(k − 1) containing the (k − 1)
blocks of length b. The ith block (for i = 1, 2, . . . , k − 1) encodes an integer
ji+1 ∈ {1, . . . , 2b} corresponding to one of the vectors of the form vi+1

ji+1
. Thus

any chromosome represents an array of (k − 1) integers [j2, j3, . . . , jk] and can
be interpreted as a linear subspace L = Lin(v2

j2 , v
3
j3 , . . . , v

k
jk

). Let fL be the
projection parallel to L onto the axis x1. The function fL can be treated as a
new attribute as follows:

fL(u) := a1(u)− α2
j2a2(u)− α3

j3a3(u) − · · · − αk
jk
ak(u)

for each object u ∈ U .

Operators: Let us consider two examples of chromosomes (assuming b = 4):

chr1 = 0010 1110 . . . 0100 . . . 1010
1 2 . . . i . . . k − 1

chr2 = 0000 1110 . . . 1000 . . . 0101
1 2 . . . i . . . k − 1

The genetic operators are defined as follows:
1. Mutation and selection are defined in standard way [72]. Mutation of chr1 is

realized in two steps; first one block, say i-th, is randomly chosen and next
its contents (in our example “0100′′) are randomly changed into a new block,
e.g., “1001′′. The described example of mutation is changing the chromosome
chr1 into chr′1, where:

chr′1 = 0010 1110 . . . 1001 . . . 1010
1 2 . . . i . . . k − 1

.

2. Crossover is done by the exchange of the whole fragments of chromosome
corresponding to one vector. The result of crossover of two chromosomes is
realized in two steps as well; first the block position i is randomly chosen
and next the contents of ith blocks of two chromosomes are exchanged. For
example, if crossover is performed on chr1, chr2 and ith block position is
randomly chosen then we obtain their offspring:

chr′1 = 0010 1110 . . . 1000 . . . 1010
1 2 . . . i . . . k − 1

chr′2 = 0000 1110 . . . 0100 . . . 0101
1 2 . . . i . . . k − 1

Fitness function: The fitness of any chromosome χ representing a linear sub-
space L = Lin(v2

j2 , v
3
j3 , . . . , v

k
jk

) is calculated by the quality of the best cut on
the attribute fL. Moreover, together with the best cut on fL, the chromosome
determines the best hyperplane parallel to L. In fact, any cut p ∈ IR on fL

defines the hyperplane H = H
(
p, v2

j2 , v
3
j3 , . . . , v

k
jk

)
as follows:
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H = (p, 0, . . . , 0)⊕ L =
{
P ∈ IRk :

−−→
P0P ∈ L

}
=
{

(x1, x2, . . . , xk) ∈ IRk : [x1 − p, x2, . . . , xk] = b2v
2
j2 + b3v

3
j3 + · · · + bkvk

jk

}
for some b2, . . . , bk ∈ IR

=
{

(x1, x2, . . . , xk) ∈ IRk : x1 − p = α2
j2x2 + α3

j3x3 + · · · + αk
jk
xk

}
=
{

(x1, x2, . . . , xk) ∈ IRk : x1 − α2
j2x2 − α3

j3x3 − · · · − αk
jk
xk − p = 0

}
.

The hyperplane quality and, in consequence, the fitness of the chromosome
can be calculated using different measures introduced in previous section. In
[93] we have proposed to evaluate the quality of chromosome using two factors,
i.e., discernibility function as an award factor and indiscernibility function as a
penalty. Thus the fitness of chromosome chi = [j2, . . . , jk] is defined by

fitness(χ) = power(H)
= F (award(H), penalty(H)).

where H is the best hyperplane parallel to the linear subspace spanning on
base vectors (v2

j2
, v3

j3
, . . . , vk

jk
) and F (., .) is a two-argument function which is

increasing w.r.t. the first argument and decreasing w.r.t. the second argument.
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Fig. 33. Interpretation of the projection function in two-dimensional space

8.2.3 Searching for Optimal Surfaces
In the previous section we considered a method of searching for semi-optimal
hyperplanes. Below, we present a natural way to generate a semi-optimal set of
high degree surfaces (curves) applying the existing methods for hyperplanes.
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Let us note that any i-th degree surface in IRk can be defined as follows:

S =
{

(x1, . . . , xk) ∈ IRk : P (x1, . . . , xk) = 0
}
,

where P (x1, . . . , xk) is an arbitrary ith degree polynomial over k variables.
Any ith degree polynomial is a linear combination of monomials, each of degree

not greater than i. By η (i, k) we denote the number of k-variable monomials of
degrees ≤ i. Then, instead of searching for ith degree surfaces in k-dimensional
affine real space IRk, one can search for hyperplanes in space IRη(i,k).

It is easy to see that the number of jth degree monomials built from k variables

is equal to
(
j + k − 1

k − 1

)
. Then we have

η (i, k) =
i∑

j=1

(
j + k − 1

k − 1

)
= O
(
ki
)
. (58)

As we can see, applying the above surfaces we have better chance to discern
objects from different decision classes with smaller number of “cuts”. This is be-
cause higher degree surfaces are more flexible than normal cuts. This fact can be
shown by applying the VC (Vapnik-Chervonenkis) dimension for corresponding
set of functions [154].

To search for an optimal set of ith degree surfaces discerning objects from
different decision classes of a given decision table S = (U,A ∪ {d}) one can con-
struct a new decision table Si =

(
U,Ai ∪ {d}

)
where Ai is a set of all monomials

of degree ≤ i built on attributes from A. Any hyperplane found for the decision
table Si is a surface in the original decision table S. The cardinality of Ai is
estimated by the formula (58).

Hence, for the better solution, we must pay with the increase of space and
time complexity.

9 Rough Sets and Association Analysis

In this section, we consider a well-known and famous nowadays data mining
technique, called association rules [3], to discover useful patterns in transactional
databases. The problem is to extract all associations and correlations among
data items where the presence of one set of items in a transaction implies (with
a certain degree of confidence) the presence of other items. Besides market basket
data, association analysis is also applicable to other application domains such as
customer relationship management (CRM), bioinformatics, medical diagnosis,
Web mining, and scientific data analysis.

We will point out also the contribution of rough sets and approximate Boolean
reasoning approach in association analysis, as well as the correspondence between
the problem of searching for approximate reduct and the problem of generating
association rules from frequent item sets.
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9.1 Approximate Reducts

Let S = (U,A∪{dec}) be a given decision table, where U = {u1,u2, . . . ,un} and
A = {a1, . . . , ak}. Discernibility matrix of S was defined as the (n × n) matrix
M(S) = [Mi,j ]

n
i,j=1 where

Mi,j =
{
{am ∈ A : am(xi) �= am(xj)} if dec(xi) �= dec(xj)
∅ otherwise. (59)

Let us recall that a set B ⊂ A of attributes is “consistent with dec” (or
dec-consistent) if B has non-empty intersection with each non-empty set Mi,j ,
i.e.,

B is consistent with dec iff ∀i,j(Ci,j = ∅) ∨ (B ∩ Ci,j �= ∅).

Minimal (with respect to inclusion) dec-consistent sets of attributes are called
decision reducts.

In some applications (see [138], [120]), instead of reducts we prefer to use their
approximations called α-reducts, where α ∈ [0, 1] is a real parameter. A set of
attributes is called α-reduct if it is minimal (with respect to inclusion) among
the sets of attributes B such that

disc(B)
conflict(S)

=
|{Mi,j : B ∩Mi,j �= ∅}|

|{Ci,j : Ci,j �= ∅}| ≥ α.

If α = 1, the notions of an α-reduct and a (normal) reduct coincide. One can
show that for a given α, problems of searching for shortest α-reducts and for all
α-reducts are also NP-hard [96].

9.2 From Templates to Optimal Association Rules

Let S = (U,A) be an information table. By descriptors (or simple descriptors)
we mean the terms of the form (a = v), where a ∈ A is an attribute and v ∈ Va

is a value in the domain of a (see [98]). By template we mean the conjunction of
descriptors:

T = D1 ∧D2 ∧ ... ∧Dm,

where D1, ...Dm are either simple or generalized descriptors. We denote by
length(T) the number of descriptors being in T.

For the given template with length m:

T = (ai1 = v1) ∧ ... ∧ (aim = vm)

the object u ∈ U is said to satisfy the template T if and only if ∀jaij (u) = vj . In
this way the template T describes the set of objects having the common property:
“values of attributes ai1 , ..., aim are equal to v1, ..., vm, respectively”. In this sense
one can use templates to describe the regularity in data, i.e., patterns - in data
mining or granules - in soft computing.
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Templates, except for length, are also characterized by their support. The
support of a template T is defined by

support(T) = |{u ∈ U : u satisfies T}|.

From descriptive point of view, we prefer long templates with large support.
The templates that are supported by a predefined number (say min support)

of objects are called the frequent templates. This notion corresponds exactly
to the notion of frequent itemsets for transaction databases [1]. Many efficient
algorithms for frequent itemset generation has been proposed in [1], [3], [2],
[161] [44]. The problem of frequent template generation using rough set method
has been also investigated in [98], [105]. In Sect. 5.4 we considered a special
kind of templates called decision templates or decision rules. Almost all objects
satisfying a decision template should belong to one decision class.

Let us assume that the template T, which is supported by at least s objects,
has been found (using one of existing algorithms for frequent templates). We
assume that T consists of m descriptors i.e.

T = D1 ∧D2 ∧ · · · ∧Dm

where Di (for i = 1, . . . ,m) is a descriptor of the form (ai = vi) for some ai ∈ A
and vi ∈ Vai . We denote the set of all descriptors occurring in the template T
by DESC(T), i.e.,

DESC(T) = {D1, D2, . . . , Dm}.
Any set of descriptors P ⊆ DESC(T) defines an association rule

RP =def

⎛⎝ ∧
Di∈P

Di =⇒
∧

Dj /∈P

Dj

⎞⎠ .

The confidence factor of the association rule RP can be redefined as

confidence (RP) =def
support(T)

support(
∧

Di∈P Di)
,

i.e., the ratio of the number of objects satisfying T to the number of objects
satisfying all descriptors from P. The length of the association rule RP is the
number of descriptors from P.

In practice, we would like to find as many association rules with satisfactory
confidence as possible (i.e., confidence (RP) ≥ c for a given c ∈ (0; 1)). The
following property holds for the confidence of association rules:

P1 ⊆ P2 =⇒ confidence (RP1) ≤ confidence (RP2) . (60)

This property says that if the association rule RP generated from the descriptor
set P has satisfactory confidence then the association rule generated from any
superset of P also has satisfactory confidence.

For a given confidence threshold c ∈ (0; 1] and a given set of descriptors
P ⊆ DESC(T), the association rule RP is called c-representative if
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1. confidence (RP) ≥ c;
2. for any proper subset P′ ⊂ P we have confidence (RP′) < c.

From Eqn. (60) one can see that instead of searching for all association rules,
it is enough to find all c-representative rules. Moreover, every c-representative
association rule covers a family of association rules. The shorter the association
rule R is, the bigger is the set of association rules covered by R. First of all, we
show the following theorem:

Theorem 24. For a fixed real number c ∈ (0; 1] and a template T, the optimal
c–association rules problem – i.e., searching for the shortest c-representative
association rule from T in a given table A – is NP-hard.

Proof: Obviously, the Optimal c–Association Rules Problem belongs to NP. We
show that the Minimal Vertex Covering Problem (which is NP-hard, see e.g.
[35]) can be transformed to the Optimal c-Association Rules Problem.

Let the graph G = (V,E) be an instance of the Minimal Vertex Cover Prob-
lem, where V = {v1, v2, . . . vn} and E = {e1, e2, . . . em}. We assume that every
edge ei is represented by two-element set of vertices, i.e., ei = {vi1 , vi2}. We con-
struct the corresponding information table (or transaction table) A(G) = (U,A)
for the Optimal c-Association Rules Problem as follows:

1. The set U consists of m objects corresponding to m edges of the graph G
and k + 1 objects added for some technical purpose, i.e.,

U = {x1, x2, . . . , xk} ∪ {x∗} ∪ {ue1 ,ue2 , . . . ,uem},

where k =
⌊

c
1−c

⌋
is a constant derived from c.

2. The set A consists of n attributes corresponding to n vertices of the graph
G and an attribute a∗ added for some technical purpose, i.e.,

A = {av1 , av2 , . . . , avn} ∪ {a∗}.

The value of attribute a ∈ A over the object u ∈ U is defined as follows:
(a) if u ∈ {x1, x2, . . . , xk} then

a(xi) = 1 for any a ∈ A.

(b) if u = x∗ then for any j ∈ {1, . . . , n}:

avj (x
∗) = 1 and a∗(x∗) = 0.

(c) if u ∈ {ue1 ,ue2 , . . . ,uem} then for any j ∈ {1, . . . , n}:

avj (uei) =
{

0 if vj ∈ ei

1 otherwise and a∗(uei) = 1.
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Example
Let us consider the Optimal c-Association Rules Problem for c = 0.8. We il-
lustrate the proof of Theorem 24 by the graph G = (V, E) with five ver-
tices V = {v1, v2, v3, v4, v5} and six edges E = {e1, e2, e3, e4, e5, e6}. First

we compute k =
⌊

c
1−c

⌋
= 4. Hence, the information table A(G) consists

of six attributes {av1 , av2 , av3 , av4 , av5 , a∗} and (4 + 1) + 6 = 11 objects
{x1, x2, x3, x4, x

∗, ue1 , ue2 , ue3 , ue4 , ue5 , ue6}. The information table A(G) con-
structed from the graph G is presented in the figure below.

v2v1

v

v

v 3

4

5

e
e

e

e

e

e

1

2
3

6

5

4

=⇒

A(G) av1 av2 av3 av4 av5 a∗

x1 1 1 1 1 1 1

x2 1 1 1 1 1 1

x3 1 1 1 1 1 1

x4 1 1 1 1 1 1

x∗ 1 1 1 1 1 0

ue1 0 0 1 1 1 1

ue2 0 1 1 0 1 1

ue3 1 0 1 1 0 1

ue4 1 0 1 0 1 1

ue5 0 1 0 1 1 1

ue6 1 1 0 1 0 1

Fig. 34. The construction of the information table A(G) from the graph G = (V, E)
with five vertices and six edges for c = 0.8

The illustration of our construction is presented in Fig. 34.
We will show that any set of vertices W ⊆ V is a minimal covering set for the

graph G if and only if the set of descriptors

PW = {(avj = 1) : for vj ∈ W}

defined by W encodes the shortest c-representative association rule for A(G)
from the template

T = (av1 = 1) ∧ · · · ∧ (avn = 1) ∧ (a∗ = 1).

The first implication (⇒) is obvious. We show that implication (⇐) also holds.
The only objects satisfying T are x1, . . . , xk hence we have support(T) = k.

Let P ⇒ Q be an optimal c-confidence association rule derived from T. Then
we have support(T)

support(P) ≥ c, hence

support(P) ≤ 1
c
· support(T) =

1
c
· k =

1
c
·
⌊

c

1 − c

⌋
≤ 1

1 − c
=

c

1 − c
+ 1.

Because support(P) is an integer number, we have

support(P) ≤
⌊

c

1 − c
+ 1
⌋

=
⌊

c

1 − c

⌋
+ 1 = k + 1.
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Thus, there is at most one object from the set {x∗}∪{ue1 ,ue2 , . . . ,uem} satisfying
the template P. We consider two cases:

1. The object x∗ satisfies P: then the template P cannot contain the descriptor
(a∗ = 1), i.e.,

P = (avi1
= 1) · · · · · (avit

= 1)

and there is no object from {ue1 ,ue2 , . . . ,uem} which satisfies P, i.e., for any
edge ej ∈ E there exists a vertex vi ∈ {vi1 , . . . , vit} such that avi(uej ) = 0
(which means that vi ∈ ej). Hence, the set of vertices W = {vi1 , . . . , vit} ⊆ V
is a solution of the Minimal Vertex Cover Problem.

2. An object uej satisfies P: then P consists of the descriptor (a∗ = 1); thus

P = (avi1
= 1) · · · · · (avit

= 1) · (a∗ = 1).

Let us assume that ej = {vj1 , vj2}. We consider two templates P1,P2 ob-
tained from P by replacing the last descriptor by (avj1

= 1) and (avj2
= 1),

respectively, i.e.

P1 = (avi1
= 1) · · · · · (avit

= 1) · (avj1
= 1)

P2 = (avi1
= 1) · · · · · (avit

= 1) · (avj2
= 1).

One can prove that both templates are supported by exactly k objects:
x1, x2, . . . , xt and x∗. Hence, similarly to the previous case, the two sets of
vertices W1 = {vi1 , . . . , vit , vj1} and W2 = {vi1 , . . . , vit , vj2} establish the
solutions of the Minimal Vertex Cover Problem.

We showed that any instance I of the Minimal Vertex Cover Problem can be
transformed to the corresponding instance I ′ of the Optimal c–Association Rule
Problem in polynomial time and any solution of I can be obtained from solutions
of I ′. Our reasoning shows that the Optimal c–Association Rules Problem is NP-
hard. �

Since the problem of searching for the shortest representative association rules
is NP-hard, the problem of searching for all association rules must be also as
least NP-hard because this is a more complex problem. Having all association
rules one can easily find the shortest representative association rule. Hence, we
have the following:

Theorem 25. The problem of searching for all (representative) association
rules from a given template is at least NP-hard unless P = NP .

The NP-hardness of presented problems forces us to develop efficient approx-
imate algorithms solving them. In the next section we show that they can be
developed using rough set methods.
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9.3 Searching for Optimal Association Rules by Rough Set Methods

To solve the presented problem, we show that the problem of searching for
optimal association rules from a given template is equivalent to the problem of
searching for local α-reducts for a decision table, which is a well-known problem
in rough set theory. We propose the Boolean reasoning approach for association
rule generation.

Association rule problem (A,T) −−−→ New decision table A|T

�
Association rules RP1 , . . . ,RPt ←−−− α-reducts P1, . . . ,Pt of A|T

Fig. 35. The Boolean reasoning scheme for association rule generation

We construct a new decision table A|T = (U,A|T ∪ d) from the original infor-
mation table A and the template T as follows:

– A|T = {aD1 , aD2 , . . . , aDm} is a set of attributes corresponding to the de-
scriptors of the template T

aDi(u) =
{

1 if the object u satisfies Di,
0 otherwise; (61)

– the decision attribute d determines whether a given object satisfies the tem-
plate T, i.e.,

d(u) =
{

1 if the object u satisfies T,
0 otherwise. (62)

The following theorems describe the relationship between association rules
problem and reduct searching problem.

Theorem 26. For a given information table A = (U,A) and a template T, the
set of descriptors P is a reduct in A|T if and only if the rule∧

Di∈P

Di ⇒
∧

Dj /∈P

Dj

is 100%-representative association rule from T.

Proof: Any set of descriptors P is a reduct in the decision table A|T if and only
if every object u with decision 0 is discerned from objects with decision 1 by one
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of the descriptors from P (i.e., there is at least one 0 in the information vector
infP(u)). Thus u does not satisfy the template

∧
Di∈P Di. Hence

support

( ∧
Di∈P

Di

)
= support(T).

The last equality means that ∧
Di∈P

Di ⇒
∧

Dj /∈P

Dj

is 100%-confidence association rule for table A.
�

Analogously, one can show the following fact:

Theorem 27. For a given information table A = (U,A), a template T, a set of
descriptors P ⊆ DESC(T), the rule∧

Di∈P

Di ⇒
∧

Dj /∈P

Dj

is a c-representative association rule obtained from T if and only if P is a α-
reduct of A|T, where α = 1 −

1
c−1
n
s −1 , n is the total number of objects from U and

s = support(T). In particular, the problem of searching for optimal association
rules can be solved using methods for α-reduct finding.

Proof: Assume that support(
∧

Di∈P Di) = s + e, where s = support(T). Then
we have

confidence

⎛⎝ ∧
Di∈P

Di ⇒
∧

Dj /∈P

Dj

⎞⎠ =
s

s + e
≥ c.

This condition is equivalent to

e ≤
(

1
c
− 1
)
s.

Hence, one can evaluate the discernibility degree of P by

disc degree(P) =
e

n− s
≤
(

1
c − 1
)
s

n− s
=

1
c − 1
n
s − 1

= 1 − α.

Thus

α = 1 −
1
c − 1
n
s − 1

.

�
Searching for minimal α-reducts is a well-known problem in the rough set theory.
One can show that the problem of searching for shortest α-reducts is NP-hard
[96] and the problem of searching for the all α-reducts is at least NP-hard. How-
ever, there exist many approximate algorithms solving the following problems:
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1. Searching for shortest reduct (see [143]);
2. Searching for a number of short reducts (see, e.g., [158]);
3. Searching for all reducts (see, e.g., [7]).

The algorithms for the first two problems are quite efficient from computational
complexity point of view. Moreover, in practical applications, the reducts gen-
erated by them are quite closed to the optimal one.

In Sect. 9.3.1, we present some heuristics for these problems in terms of asso-
ciation rule generation.

9.3.1 Example
The following example illustrates the main idea of our method. Let us consider
the information table A (Table 18) with 18 objects and 9 attributes.

Assume that the template

T = (a1 = 0) ∧ (a3 = 2) ∧ (a4 = 1) ∧ (a6 = 0) ∧ (a8 = 1)

has been extracted from the information table A. One can see that support(T) =
10 and length(T) = 5. The new decision table A|T is presented in Table 19.

The discernibility function for decision table A|T is as follows

f(D1, D2, D3, D4, D5) = (D2 ∨D4 ∨D5) ∧ (D1 ∨D3 ∨D4) ∧ (D2 ∨D3 ∨D4)
∧(D1 ∨D2 ∨D3 ∨D4) ∧ (D1 ∨D3 ∨D5)
∧(D2 ∨D3 ∨D5) ∧ (D3 ∨D4 ∨D5) ∧ (D1 ∨D5)

Table 18. The example of information table A and template T with support 10

A a1 a2 a3 a4 a5 a6 a7 a8 a9

u1 0 * 1 1 * 2 * 2 *

u2 0 * 2 1 * 0 * 1 *

u3 0 * 2 1 * 0 * 1 *

u4 0 * 2 1 * 0 * 1 *

u5 1 * 2 2 * 1 * 1 *

u6 0 * 1 2 * 1 * 1 *

u7 1 * 1 2 * 1 * 1 *

u8 0 * 2 1 * 0 * 1 *

u9 0 * 2 1 * 0 * 1 *

u10 0 * 2 1 * 0 * 1 *

u11 1 * 2 2 * 0 * 2 *

u12 0 * 3 2 * 0 * 2 *

u13 0 * 2 1 * 0 * 1 *

u14 0 * 2 2 * 2 * 2 *

u15 0 * 2 1 * 0 * 1 *

u16 0 * 2 1 * 0 * 1 *

u17 0 * 2 1 * 0 * 1 *

u18 1 * 2 1 * 0 * 2 *

T 0 * 2 1 * 0 * 1 *
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Table 19. The new decision table A|T constructed from A and template T

A|T D1 D2 D3 D4 D5 d
a1 = 0 a3 = 2 a4 = 1 a6 = 0 a8 = 1

u1 1 0 1 0 0 0

u2 1 1 1 1 1 1

u3 1 1 1 1 1 1

u4 1 1 1 1 1 1

u5 0 1 0 0 1 0

u6 1 0 0 0 1 0

u7 0 0 0 0 1 0

u8 1 1 1 1 1 1

u9 1 1 1 1 1 1

u10 1 1 1 1 1 1

u11 0 1 0 1 0 0

u12 1 0 0 1 0 0

u13 1 1 1 1 1 1

u14 1 1 0 0 0 0

u15 1 1 1 1 1 1

u16 1 1 1 1 1 1

u17 1 1 1 1 1 1

u18 0 1 1 1 0 0

After the condition presented in Table 20 is simplified, we obtain six reducts for
the decision table A|T.

f(D1, D2, D3, D4, D5) = (D3 ∧D5) ∨ (D4 ∧D5) ∨ (D1 ∧D2 ∧D3) ∨
(D1 ∧D2 ∧D4) ∨ (D1 ∧D2 ∧D5) ∨ (D1 ∧D3 ∧D4)

Thus, we have found from the template T six association rules with (100%)-
confidence (see Table 20).

For c = 90%, we would like to find α-reducts for the decision table A|T, where

α = 1 −
1
c − 1
n
s − 1

= 0.86.

Hence, we would like to search for a set of descriptors that covers at least

2(n− s)(α)3 = 28 ∧ 0.863 = 7

elements of discernibility matrix M(A|T). One can see that the following sets of
descriptors:

{D1, D2}, {D1, D3}, {D1, D4}, {D1, D5}, {D2, D3}, {D2, D5}, {D3, D4}

have non-empty intersection with exactly 7 members of the discernibility matrix
M(A|T). Table 20 presents all association rules achieved from those sets.
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Table 20. The simplified version of the discernibility matrix M(A|T); representative
association rules with (100%)-confidence and representative association rules with at
least (90%)-confidence

M(A|T) u2, u3, u4, u8, u9,
u10, u13, u15, u16, u17

u1 D2 ∨ D4 ∨ D5

u5 D1 ∨ D3 ∨ D4

u6 D2 ∨ D3 ∨ D4

u7 D1 ∨ D2 ∨ D3 ∨ D4

u11 D1 ∨ D3 ∨ D5

u12 D2 ∨ D3 ∨ D5

u14 D3 ∨ D4 ∨ D5

u18 D1 ∨ D5

=⇒

100%-representative rules

D3 ∧ D5 ⇒ D1 ∧ D2 ∧ D4

D4 ∧ D5 ⇒ D1 ∧ D2 ∧ D3

D1 ∧ D2 ∧ D3 ⇒ D4 ∧ D5

D1 ∧ D2 ∧ D4 ⇒ D3 ∧ D5

D1 ∧ D2 ∧ D5 ⇒ D3 ∧ D4

D1 ∧ D3 ∧ D4 ⇒ D2 ∧ D5

90%-representative rules

D1 ∧ D2 ⇒ D3 ∧ D4 ∧ D5

D1 ∧ D3 ⇒ D3 ∧ D4 ∧ D5

D1 ∧ D4 ⇒ D2 ∧ D3 ∧ D5

D1 ∧ D5 ⇒ D2 ∧ D3 ∧ D4

D2 ∧ D3 ⇒ D1 ∧ D4 ∧ D5

D2 ∧ D5 ⇒ D1 ∧ D3 ∧ D4

D3 ∧ D4 ⇒ D1 ∧ D2 ∧ D5

In Fig. 36, we present the set of all 100%–association rules (light gray region)
and 90%–association rules (dark gray region). The corresponding representative
association rules are represented in bold frames.

9.3.2 The Approximate Algorithms
From the previous example it follows that the searching problem for the repre-
sentative association rules can be considered as a searching problem in the lattice
of attribute subsets (see Fig. 36). In general, there are two searching strategies:
bottom–up and top–down. The top–down strategy starts with the whole descrip-
tor set and tries to go down through the lattice. In every step, we reduce the
most superfluous subsets keeping the subsets which most probably can be re-
duced in the next step. Almost all existing methods realize this strategy (e.g.,
Apriori algorithm [2]). The advantage of these methods is as follows:

1. They generate all association rules during searching process.
2. It is easy to implement them for either parallel or concurrent computer.

But this process can take very long computation time because of NP-hardness
of the problem (see Theorem 25).

The rough set based method realizes the bottom–up strategy. We start with
the empty set of descriptors. Here we describe the modified version of greedy
heuristics for the decision table A|T. In practice, we do not construct this addi-
tional decision table. The main problem is to compute the occurrence number
of descriptors in the discernibility matrix M(A|T). For any descriptor D, this
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Algorithm 8. Searching for shortest representative association rule
Input: Information table A, template T, minimal confidence c.
Output: Short c-representative association rule
begin1

Set P := ∅; UP := U ;2

min support := |U | − 1
c
· support(T);3

Select the descriptor D from DESC(T) \P which is satisfied by the smallest4

number of objects from UP;
Set P := P ∪ {D};5

UP := satisfy(P);6

// i.e., set of objects satisfying all descriptors from P
if |UP| > min support then7

GOTO Step 4;8

else9

STOP;10

end11

end12

D1 D2 D3 D4 D5

D1 D2 D3 D4 D1 D2 D3 D5 D1 D2 D4 D5 D1 D3 D4 D5 D2 D3 D5D4

D1 D2 D3 D4 D5

D1D2 D3 D1D2D4 D1 D2D3D4 D1D2 D3D5 D1D2D3D5 D3D5D4 D1D4 D2 D3D5 D4D5 D5D4

D1D2 D1D3 D1D4 D1D5 D2 D3 D2D4 D2D5 D3D4 D3D5 D4D5

association rules with
confidence = 100%

association rules with
confidence < 90%

association rules with
confidence > 90%

Fig. 36. The illustration of 100% and 90% representative association rules
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number is equal to the number of “0′′ occurring in the column aD represented
by this descriptor and it can be computed using simple SQL queries of the form

SELECT COUNT ... WHERE ...

We present two algorithms: the first (Algorithm 8) finds almost the shortest
c-representative association rule. The presented algorithm does not guarantee
that the descriptor set P is c-representative. But one can achieve it by removing
from P (which is in general small) all unnecessary descriptors.

The second algorithm (Algorithm 9) finds k short c-representative association
rules where k and c are parameters given by the user. This algorithm makes use
of the beam search strategy which evolves k most promising nodes at each depth
of the searching tree.

Algorithm 9. Searching for k short representative association rules
Input: Information table A, template T, minimal confidence c, number of

representative rules k ∈ N.
Output: k short c-representative association rules RP1 , . . . , RPk .
begin1

for i := 1 to k do2

Set Pi := ∅;3

UPi := U ;4

end5

Set min support := |U | − 1
c
· support(T);6

Result set := ∅;7

Working set := {P1,. . . , Pk};8

Candidate set := ∅;9

for (each Pi ∈ Working set) do10

Select k descriptors Di
1, . . . , D

i
k from DESC(T) \ Pi which is satisfiedby11

the smallest number of objects from UPi ;
Insert Pi ∪ {Di

1}, . . . ,Pi ∪ {Di
k} to the Candidate set;12

end13

Select k descriptor sets P
′
1,. . . , P

′
k from the Candidate set (if exist) which14

are satisfied by smallest number of objects from U ;
Set Working set := {P′

1,. . . , P
′
k};15

for (Pi ∈ Working set) do16

Set UPi := satisfy(Pi);17

if |UPi | < min support then18

Move Pi from Working set to the Result set;19

end20

if (|Result set| > k or Working set is empty) then21

STOP;22

else23

GOTO Step 9;24

end25

end26

end27
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P1 P2 Pk...

D1 Dk
1 1... D1 Dk

2 2... D1 Dk
k k...

P1U{D } 1
1 P1U{D } k

1 P2U{D } 1
2 P2U{D } k

2 PkU{D } 1
k PkU{D } k

k...... ... ...

P'1 P'2 P'k

The candidate set

Old working set

New working set

Fig. 37. The illustration of the “k short representative association rules” algorithm

10 Rough Set and Boolean Reasoning Approach to
Mining Large Data Sets

Mining large data sets is one of the biggest challenges in KDD. In many practical
applications, there is a need of data mining algorithms running on terminals of
a client–server database system where the only access to database (located in
the server) is enabled by SQL queries.

Unfortunately, the proposed so far data mining methods based on rough sets
and Boolean reasoning approach are characterized by high computational com-
plexity and their straightforward implementations are not applicable for large
data sets. The critical factor for time complexity of algorithms solving the dis-
cussed problem is the number of simple SQL queries like

SELECT COUNT FROM aTable WHERE aCondition

In this section, we present some efficient modifications of these methods to solve
out this problem. We consider the following issues:

– Searching for short reducts from large data sets;
– Induction of rule based rough classifier from large data sets;
– Searching for best partitions defined by cuts on continuous attributes;
– Soft cuts: a new paradigm for discretization problem.

10.1 Searching for Reducts

The application of ABR approach to reduct problem was described in Sect. 5.
We have shown (see Algorithm 2 on page 389) that the greedy heuristic for
minimal reduct problem uses only two functions:
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– disc(B) = number of pairs of objects discerned by attributes from B;
– isCore(a) = check whether a is a core attribute.

In this section, we will show that this algorithm can be efficiently implemented
in DBMS using only simple SQL queries.

Let S = (U,A ∪ {dec}) be a decision table. Recall that by “counting table” of
a set of objects X ⊂ U we denoted the vector:

CountTable(X) = 〈n1, . . . , nd〉,

where nk = card(X ∩ CLASSk) is the number of objects from X belonging to
the kth decision class. We define a conflict measure of X by

conflict(X) =
∑
i<j

ninj =
1
2

⎡⎣( d∑
k=1

nk

)2

−
d∑

k=1

n2
k

⎤⎦ .
In other words, conflict(X) is the number of pairs of different class objects.

By counting table of a set of attributes B we mean the two-dimensional array
Count(B) = [nv,k]v∈INF (B),k∈Vdec

, where

nv,k = card({x ∈ U : infB(x) = v and dec(x) = k}).

Thus Count(B) is a collection of counting tables of equivalence classes of the
indiscernibility relation IND(B). It is clear that the complexity time for the
construction of counting table is O(nd log n), where n is the number of objects
and d is the number of decision classes. It is clear that counting table can be
easily constructed in data base management systems using simple SQL queries.

The discernibility measure of a set of attributes B can be easily calculated
from the counting table as follows:

discdec(B) =
1
2

∑
v �=v′,k �=k′

nv,k · nv′,k′ .

The disadvantage of this equation relates to the fact that it requires O(S2)
operations, where S is the size of the counting table Count(B).

The discernibility measure can be understood as a number of unresolved (by
the set of attributes B) conflicts. One can show that:

discdec(B) = conflict(U)−
∑

[x]∈U/IND(B)

conflict([x]IND(B)). (63)

Thus, the discernibility measure can be determined in O(S) time:

discdec(B) =
1
2

(
n2 −

d∑
k=1

n2
k

)
− 1

2

∑
v∈INF (B)

⎡⎣( d∑
k=1

nv,k

)2

−
d∑

k=1

n2
v,k

⎤⎦ , (64)

where nk = |CLASSk| =
∑

v nv,k is the size of kth decision class.
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Moreover, one can show that attribute a is a core attribute of decision table
S = (U,A ∪ {dec}) if and only if

discdec(A− {a}) < discdec(A).

Thus both operations discdec(B) and isCore(a) can be performed in linear time
with respect to the counting table.

Example 20. The counting table for a1 is as follows:

Count(a1) dec = no dec = yes
a1 = sunny 3 2
a1 = overcast 0 3
a1 = rainy 1 3

We illustrate Eqn. (64) by inserting some additional columns to the counting
table:

Count(a1) dec = no dec = yes
∑

conflict(.)
a1 = sunny 3 2 5 1

2 (52 − 22 − 32) = 6
a1 = overcast 0 3 3 1

2 (32 − 02 − 32) = 0
a1 = rainy 1 3 4 1

2 (42 − 12 − 32) = 3
U 4 8 12 1

2 (122 − 82 − 42) = 32

Thus discdec(a1) = 32 − 6 − 0 − 3 = 23.

10.2 Induction of Rough Classifiers

Decision rules play an important role in KDD and data mining. Rule-based
classifiers establish an accurate and interpretable model for data.

As it has been mentioned before (Sect. 5), any rule-based classification method
consists of three steps: (1) rule generation, (2) rule selection and (3) decision
making (e.g., by voting). The general framework for rule based classification
methods was presented in Fig. 11. In machine learning, this approach is called
eager (or laborious) learning methodology.

In lazy learning methods new objects are classified without the generalization
step. For example, in kNN (k Nearest Neighbors) classifiers, the decision of new
object x can be made by taking a vote between k nearest neighbors of x. In lazy
decision tree method, we try to reconstruct the path p(x) of the “imaginable
decision tree” that can be applied to x.

In this section, we present a lazy learning approach to rule-based classification
methods. The proposed method can be applied to solve the classification problem
on large data sets.

10.2.1 Induction of Decision Rules by Lazy Learning
Lazy learning methods need more time complexity for the classification step,
i.e., the answer time for the question about decision of a new object is longer
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Fig. 38. The lazy rule-based classification system

than in eager classification methods. But lazy classification methods are well
scalable, i.e., they can be realized for larger decision table using distributed
computer system [151]. The scalability property is also very advisable in data
mining. Unfortunately, the eager classification methods are weakly scalable. As
we recalled before, the time and memory complexity of existing algorithms does
not make possible to apply rule base classification methods for very large decision
table.

The most often approach, which is placed for rough set-based methods, relates
to the lack of scalability. We will show that some classification methods based on
rough set theory can be modified using lazy learning algorithms to make them
more scalable. The lazy rule-based classification diagram is presented in Fig. 38.

In other words, we will extract the set of decision rules covering the object
x directly from data without learning process. The large decision table must be
stroed in a data base system and the main problem is to minimize the number
SQL queries used in the algorithm. We show that this diagram can work for the
classification method described in Sect. 5 using the set of decision rules from
MinRules(S,λmax, σmin, αmin). Formally, the problem is formulated as follows:
given a decision table S = (U,A∪ {dec}) and a new object x, find all (or almost
all) decision rules from the set

MatchRules(S, x) = {r ∈ MinRules(S,λmax, σmin, αmin) : x satisfies r}.

In the case of too large number of such rules, one can find as many rules from
MatchRules(S, x) as required.

Let Desc(x) = {d1, d2, . . . , dk}, where di := (ai = ai(x)), be the set of all
descriptors derived from x. We denote by Pi = {S ⊂ Desc(x) : |S| = i} the
family of sets consisting of exactly i descriptors, and let P =

⋃k
i=1 Pi. One can

see that every decision rule r ∈ MatchRules(S, x) should have the form

di1 ∧ · · · ∧ dim ⇒ (dec = k)
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for some di1 , . . . , dim ∈ Desc(x). The problem of searching for MatchRules(S, x)
is equivalent to the problem of searching for corresponding families of subsets
from P using minimal number of basic SQL queries to the database. We will
show that the set MatchRules(S, x) can be found by modified Apriori algorithm
(see [2]).

Let S ∈ P be an arbitrary set of descriptors from Desc(x). The support of S
can be defined by

support(S) = |{u ∈ U : u satisfies all descriptors from S}|.

Let (s1, . . . , sd) be the counting table of the set of objects satisfying all descrip-
tors from S (the class distribution of S), i.e.,

si = |{u ∈ U : (u ∈ DECi) and (u satisfies
∧

S)}|.

It is obvious that support(S) = s1 + · · ·+ sd.
We assume that the function GetClassDistribution(S) returns the class dis-

tribution of S. One can see that this function can be computed using simple
SQL query of the form SELECT COUNT FROM ... WHERE ... GROUP BY ...

Algorithm 10. Rule selection method based on Apriori algorithm
Input: The object x, the maximal length λmax, the minimal support σmin, and

the minimal confidence αmin.
Output: MatchRules(S, x): decision rules from MinRules(S, λmax, σmin, αmin)

covering x.
begin1

C1 := P1; i := 1;2

while ((i ≤ λmax) AND (Ci is not empty)) do3

Fi := ∅;4

Ri := ∅;5

for C ∈ Ci do6

(s1, . . . , sd) := GetClassDistribution(C);7

support = s1 + · · · + sd;8

if support ≥ σmin then9

if (max{s1, . . . , sd} ≥ αmin ∗ support) then10

Ri := Ri ∪ {C};11

else12

Fi := Fi ∪ {C};13

end14

end15

end16

Ci+1 := AprGen(Fi); i := i + 1;17

end18

Return
⋃

i Ri19

end20
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Table 21. The “weather” decision table S and the object x to be classified

S a1 a2 a3 a4 dec

ID outlook temperature humidity windy play

1 sunny hot high FALSE no
2 sunny hot high TRUE no
3 overcast hot high FALSE yes
4 rainy mild high FALSE yes
5 rainy cool normal FALSE yes
6 rainy cool normal TRUE no
7 overcast cool normal TRUE yes
8 sunny mild high FALSE no
9 sunny cool normal FALSE yes
10 rainy mild normal FALSE yes
11 sunny mild normal TRUE yes
12 overcast mild high TRUE yes
13 overcast hot normal FALSE yes
14 rainy mild high TRUE no

x sunny mild high TRUE ?

The algorithm consists of k iterations where k is the number of attributes.
In the ith iteration all decision rules containing i descriptors (length = i) are
extracted. For this purpose, we compute three families Ci, Ri and Fi of subsets
of descriptors in the ith iteration:

– The family Ci ⊂ Pi consists of “candidate sets” of descriptors and it can be
generated without any database operation.

– The family Ri ⊂ Ci consists of such candidates which contains descriptors
(from the left hand side) of some decision rules from MatchRules(S, x).

– The family Fi ⊂ Ci consists of such candidates which are supported by more
than σmin (frequent subsets).

In the algorithm, we apply the function AprGen(Fi) to generate the family
Ci+1 of candidate sets from Fi (see [2]) using the following observations:

1. Let S ∈ Pi+1 and let S1, S2, . . . , Si+1 be subsets formed by removing from
S one descriptor, we have support(S) ≤ min{support(Sj), for any j =
1, . . . , j + 1. This means that if S ∈ Ri+1 then Sj ∈ Fi for j = 1, . . . , i + 1.
Hence, if Sj ∈ Fi for j = 1, . . . , i + 1, then S can be inserted to Ci+1;

2. Let s(j)
1 , . . . , s

(j)
d be the class distribution of Sj and let s1, . . . , sd be the class

distribution of S, we have sk ≤ min{s(1)
k , . . . , s

(i+1)
k }, for k = 1, . . . , d. This

means that if maxk{min{s(1)k, . . . , s(i + 1)k}} ≤ αmin · σmin, then we can
remove S from Ci+1;

Example 21. Let us illustrate the idea by the well-known for us example of
weather decision table. Assume that we have to classify a new unseen object
(Table 21):

x = [sunny,mild, high, TRUE].
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Table 22. The set of all minimal decision rules

No MinConsRules(S) supp.

1 outlook(overcast)⇒play(yes) 4
2 humidity(normal) AND windy(FALSE)⇒play(yes) 4
3 outlook(sunny) AND humidity(high)⇒play(no) 3

4 outlook(rainy) AND windy(FALSE)⇒play(yes) 3
5 outlook(sunny) AND temperature(hot)⇒play(no) 2
6 outlook(rainy) AND windy(TRUE)⇒play(no) 2
7 outlook(sunny) AND humidity(normal)⇒play(yes) 2
8 temperature(cool) AND windy(FALSE)⇒play(yes) 2
9 temperature(mild) AND humidity(normal)⇒play(yes) 2

10 temperature(hot) AND windy(TRUE)⇒play(no) 1
11 outlook(sunny) AND temperature(mild) AND windy(FALSE)⇒play(no) 1
12 outlook(sunny) AND temperature(cool)⇒play(yes) 1
13 outlook(sunny) AND temperature(mild) AND windy(TRUE)⇒play(yes) 1

14 temperature(hot) AND humidity(normal)⇒play(yes) 1

i = 1 i = 2 i = 3

C1 check R1 F1 C2 check R2 F2 C3 check R3 F3

{d1} (3,2) {d1} {d1, d2} (1,1) {d1, d2} {d1, d3, (0,1) {d1, d3,
{d2} (4,2) {d2} {d1, d3} (3,0) {d1, d3} d4} d4}
{d3} (4,3) {d3} {d1, d4} (1,1) {d1, d4} {d2, d3, (1,1) {d2, d3,
{d4} (3,3) {d4} {d2, d3} (2,2) {d2, d3} d4} d4}

{d2, d4} (1,1) {d2, d4}
{d3, d4} (2,1) {d3, d4}

MatchRules(S, x) = R2 ∪ R3:

(outlook = sunny) AND (humidity = high) ⇒ play = no
(outlook = sunny) AND (temperature = mild) AND (windy = TRUE)

⇒ play = yes

Fig. 39. The illustration of algorithm for λmax = 3; σmin = 1; αmin = 1

We will compare the standard approach with the proposed method based on
lazy learning approach.

The set MinConsRules(S) for this decision table consists of 14 of all minimal
consistent rules and is presented in Table 22.

One can see that the set MatchRules(S, x) consists of two rules:

(outlook = sunny) AND (humidity = high) ⇒ play = no (rule 3)
(outlook = sunny) AND (temperature = mild) AND (windy = TRUE) ⇒

play = yes (rule 13)

Fig. 39 illustrates the main steps of Algorithm 10. One can see that both
decision rules from MatchRules(S, x) are discovered by the proposed algorithm.
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S a1 a2 a3 a4 dec

ID outlook temperature humidity windy play

1 sunny hot high FALSE no
2 sunny hot high TRUE no
3 overcast hot high FALSE yes
4 rainy mild high FALSE yes
5 rainy cool normal FALSE yes
6 rainy cool normal TRUE no
7 overcast cool normal TRUE yes
8 sunny mild high FALSE no
9 sunny cool normal FALSE yes
10 rainy mild normal FALSE yes
11 sunny mild normal TRUE yes
12 overcast mild high TRUE yes
13 overcast hot normal FALSE yes
14 rainy mild high TRUE no

x sunny mild high TRUE ?

=⇒

S|x d1 d2 d3 d4 dec

ID a1|x a2|x a3|x a4|x dec

1 1 0 1 0 no
2 1 0 1 1 no
3 0 0 1 0 yes
4 0 1 1 0 yes
5 0 0 0 0 yes
6 0 0 0 1 no
7 0 0 0 1 yes
8 1 1 1 0 no
9 1 0 0 0 yes
10 0 1 0 0 yes
11 1 1 0 1 yes
12 0 1 1 1 yes
13 0 0 0 0 yes
14 0 1 1 1 no

Fig. 40. A decision table S, object x, new decision table S|x

To explain the essence of Algorithm 10, let us define a new decision table S|x =
(U,A|x ∪ {dec}), where A|x = {a1|x, . . . , ak|x} is a new set of binary attributes
defined as follows

ai|x(u) =
{

1 if ai(u) = ai(x)
0 otherwise.

In fact, the decision table S|x is a tabular form of the Boolean function fx

encoding the problem of searching for minimal consistent decision rules covering
the object x (see Eqn. (35), page 396).

The table S|x can be treated as a special type of transaction data set because
it consists of a decision attribute. In Fig. 40, we present the decision table S|x
for the “weather” decision table from the previous example. Table S|x is a useful
construction for proving the correctness of the proposed algorithm. One can
show that each decision rule from MatchRules(S, x) can be derived from S|x.

One can see that if x ∈ U , then the presented algorithm can generate the
object oriented reducts for x. Hence, the proposed method can be applied also
for eager learning. This method can be used for adaptive rule generation system
where data is growing up in time.

10.3 Searching for Best Cuts

Searching for the best partitions is a common problem for discretization and
decision tree methods. We consider the problem of searching for optimal cuts of
real value attributes assuming that the decision table is large and is stored in a
relational database management system (DBMS).

Usually, when developing of decision tree induction methods [31], [123] and
some supervised discretization methods [17], [28], [95], [93] it is necessary to
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use a measure (or quality function) to estimate the quality of candidate cuts.
Definitions of basic measures were discussed in Sect. 5 and Sect. 6.

Let us assume that a set of candidate cuts Ca = {c1, . . . , cN} on an attribute
a and the quality measure

F : Ca → R+

are given. The straightforward algorithm should compute the values of F for all
cuts: F(c1), . . . ,F(cN ), and returns the cut cBest which maximizes or minimizes
the value of function F as a result of the searching process. Thus the algorithm
of searching for best cuts from Ca with aspect to measure F requires at least
O(N + n) steps, where n is the number of objects in the decision table. In the
case of large data tables which are stored in relational databases, for every cut
ci ∈ Ca the algorithm should draw out the counting tables (L1, . . . , Ld) and
(R1, . . . , Rd) (for intervals (−∞, ci) and [ci,∞), respectively) to compute the
value of F(ci). Hence, the straightforward algorithm requires at least O(Nd)
simple queries to search for the best cut on each attribute.

Thus, in million object data bases, the number of simple queries amounts to
millions and the time complexity of algorithm becomes unacceptable. Of course,
some simple queries can be wrapped in packages or replaced by complex queries,
but the DBMS still has to transfer millions class distributions from the server
to the client.

The most popular strategy for mining large data tables is the sampling tech-
nique [4], i.e., building a model (decision tree or discretization) for small, ran-
domly selected subset of data, and then evaluate the quality of the constructed
model on the whole data. If the quality of generated model is not sufficient, it
is necessary to refine the existing model or to construct a new model using new
random sample (see [52]). Another strategy for mining large data tables is the
parallelization technique [5], [134] using computer network architecture.

In this section, we would like to present an alternative solution to the sampling
technique.

10.3.1 Algorithm Acceleration Methods for Discernibility Measure
In this section, we present some properties for Boolean reasoning approach. They
make it possible to induce decision trees and perform discretization of real value
attributes directly from large data bases.

Tail cuts: The following property is interesting in application of MD heuristics
for large data tables as it allows for the quick elimination of a large number of
cuts.

Firstly, let us recall the definition of median which is a well-known in statistics.

Definition 24. Median of kth decision class is the middle point of its distri-
bution. In other words, if we denote by Lk(c) and Rk(c) the number of objects
from kth decision class that are on the left side of c and the right side of c,
respectively, then the median of the kth decision class is defined by

Median(k) = arg max
c∈Ca

(min{Lk(c) −Rk(c), 0}) .
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Intuitively, for any cut c, if it is on the left hand side of the median of k-
decision class, i.e., c ≤ Median(k), we have Lk(c) ≤ Rk(c), otherwise, i.e.,
c > Median(k), we have Lk(c) > Rk(c).

Let c1 < c2 · · · < cN be the set of consecutive candidate cuts, and let

cmin = min
i
{Median(i)} and cmax = max

i
{Median(i)}.

Then we have the following theorem.

Theorem 28. The quality function

Disc : {c1, . . . , cN} → N

defined over the set of cuts is increasing in {c1, . . . , cmin} and decreasing in
{cmax, . . . , cN}. Hence

cBest ∈ {cmin, . . . , cmax} .

Proof: Let us consider two cuts cL < cR < cmin. Using Eqn. (54) we have

Disc(cR) −Disc(cL) =
d∑

i=1

⎡⎣(Ri − Li)
∑
j �=i

Mj

⎤⎦ .
Because cL < cR < cmin, hence Ri−Li ≥ 0 for any i = 1, . . . d. Thus Disc(cR) ≥
Disc(cL).

Analogously, one can show that for cmax < cL < cR we have Disc(cR) ≤
Disc(cL) �
The theorem states that one can reduce the searching space using O(d logN)
SQL queries to determine the medians of decision classes (by applying the Binary
Search Algorithm). Let us also observe that if all decision classes have similar
medians then almost all cuts can be eliminated.

Efficient localization of the best cut: The idea is to apply the “divide and con-
quer” strategy to determine the best cut cBest ∈ {c1, . . . , cN} with respect to a
given quality function.

First we divide the interval containing all possible cuts into k intervals (e.g.,
k = 2, 3, . . . ). Then we choose the interval that most probably contains the best
cut. We will use some approximate discernible measures to predict the interval
which most probably contains the best cut with respect to discernibility measure.
This process is repeated until the considered interval consists of one cut. Then
the best cut can be chosen between all visited cuts.

The problem arises how to define the measure evaluating the quality of the in-
terval [cL; cR] having class distributions: (L1, . . . , Ld) in (−∞, cL); (M1, . . . ,Md)
in [cL, cR); and (R1, . . . , Rd) in [cR,∞) (see Fig. 30). This measure should esti-
mate the quality of the best cut among those belonging to the interval [cL, cR].

We consider two specific probabilistic models for distribution of objects in the
interval [cL, cR].
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Let us consider a random cut c lying between cL and cR and let (x1, x2, . . . , xd)
be the counting table of the set of objects belonging to the interval [cL, c]. Let us
assume that x1, x2, . . . , xd are independent random variables with uniform dis-
tribution over sets {0, . . . ,M1}, . . . , {0, . . . ,Md}, respectively. This assumption
is called “fully independent assumption”. Under this assumption we have

E(xi) =
Mi

2
and D2(xi) =

Mi(Mi + 2)
12

for all i ∈ {1, . . . , d}. The following theorem [88] [83] characterizes the quality of
the random cut c ∈ [cL, c].

Theorem 29. Let X = disc(c) be a random variable defined by the discernibility
measure for the random cut c ∈ [cL, cR]. The mean and the standard deviation
of X can be calculated as follows:

E(X) = E(disc(c)) =
disc(cL) + disc(cR) + conflict([cL, cR])

2
, (65)

where conflict([cL, cR]) =
∑

i�=j MiMj, and

D2(X) =
n∑

i=1

⎡⎢⎣Mi(Mi + 2)
12

⎛⎝∑
j �=i

(Rj − Lj)

⎞⎠2
⎤⎥⎦ . (66)

Proof: Let us consider any random cut c lying between cL and cR. The situation
is shown in Fig. 41.

c

c

cL R

L1 L2 ... Ld 1 2 ... dR RR1 2 ... d

1 2 ...
dx xx

M M M

Fig. 41. Random cut c and random class distribution x1, . . . , xd induced by c

X − disc(cL) =
d∑

i=1

⎡⎣(Ri + Mi − xi − Li)
∑
j �=i

xj

⎤⎦
=

d∑
i=1

⎡⎣(Ri − Li)
∑
j �=i

xj + (Mi − xi)
∑
j �=i

xj

⎤⎦
X − disc(cR) =

d∑
i=1

⎡⎣(Li + xi −Ri)
∑
j �=i

(Mj − xj)

⎤⎦
=

d∑
i=1

⎡⎣(Ri − Li)
∑
j �=i

(xj −Mj) + xi

∑
j �=i

(Mj − xj)

⎤⎦ .
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Hence

X =
disc(cL) + disc(cR)

2
+
∑
i�=j

xi(Mj − xj) +
d∑

i=1

⎡⎣(Ri − Li)
∑
j �=i

(
xj −

Mj

2

)⎤⎦ .
Then we have

E(X) =
disc(cL) + disc(cR)

2
+
∑
i�=j

E(xi)(Mj − E(xj))

+
d∑

i=1

⎡⎣(Ri − Li)
∑
j �=i

(
E(xj) −

Mj

2

)⎤⎦
=

disc(cL) + disc(cR)
2

+
1
4

∑
i�=j

MiMj.

In the consequence we have

E(X) =
disc(cL) + disc(cR) + conflict(cL; cR)

2
;

X − E(X) =
∑
i�=j

(
xi −

Mi

2

)[
(Rj − Lj) −

(
xj −

Mj

2

)]
.

Thus

D2(X) = E
(
[X − E(X)]2

)
=

n∑
i=1

⎡⎢⎣Mi(Mi + 2)
12

⎛⎝∑
j �=i

(Rj − Lj)

⎞⎠2
⎤⎥⎦

which complete the proof. �
One can use formulas (65) and (66) to construct a measure estimating quality
of the best cut in [cL, cR]

Eval ([cL, cR], α) = E(W (c)) + α
√

D2(W (c)), (67)

where the real parameter α from [0, 1] can be tuned in the learning process. The
details of this method are presented in Algorithm 11.

One can see that to determine the value Eval ([cL, cR], α) we need to have the
class distributions (L1, . . . , Ld), (M1, . . . ,Md) and (R1, . . . , Rd) of the attribute
a in (−∞, cL), [cL, cR) and [cR,∞). This requires only O(d) simple SQL queries
of the form:

SELECT COUNT
FROM DecTable
WHERE (attribute_a BETWEEN value_1 AND value_2) AND (dec = i)
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Algorithm 11. Localization of optimal cuts
Input: Attribute a and a set of candidate cuts Ca = {c1, . . . , cN} on a;
Two parameters: k ∈ N and α ∈ [0, 1].
Output: Semi-optimal cut c ∈ Ca.
begin1

cimin := mink{Median(k)};2

cimax := maxk{Median(k)};3

Left := imin; Right := imax;4

while (Left < Right) do5

Divide [Left; Right] into k intervals with equal length by (k + 1)6

boundary points, i.e.,

pi = Left + i ∗ Right − Left

k
;

for i = 0, . . . , k.
for i = 1, . . . , k do7

compute Eval([cpi−1 , cpi ], α) using Formula (67);8

end9

[pj−1; pj ] := the interval with maximal value of Eval(.);10

Left := pj−1; Right := pj ;11

end12

Return the cut cLeft;13

end14

Hence, the number of queries required for running our algorithm is of order O
(dk logk N). In practice we set k = 3 because the function f(k) = dk logk N over
positive integers is taking minimum for k = 3. For k > 2, instead of choosing
the best interval [pi−1, pi], the algorithm can select the best union [pi−m, pi] of m
consecutive intervals in every step for a predefined parameterm < k. The modified
algorithm needs more – but still of order O(logN) – simple questions only.

10.3.2 Examples
We consider a data table consisting of 12000 records. Objects are classified into
3 decision classes with the distribution (5000, 5600, 1400), respectively. One real
value attribute has been selected and N = 500 cuts on its domain has generated
class distributions (histograms) as shown in Fig. 42.

The medians of classes are c166, c414 and c189, respectively. The median of
every decision class has been determined by the binary search algorithm using
logN = 9 simple queries. Applying Theorem 28 we conclude that it is enough
to consider only cuts from {c166, . . . , c414}. In this way 251 cuts have been elim-
inated by using 27 simple queries only.

In Fig. 43 we show the graph of W (ci) for i ∈ {166, . . . , 414} and we illustrated
the outcome of application of our algorithm to reduce the set of cuts for k = 2
and α = 0.
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Fig. 42. Histograms of the first, the second and the third decision classes, respectively

First, the cut c290 is chosen and it is necessary to determine to which of the
intervals [c166, c290] and [c290, c414] the best cut belongs. The values of function
Eval on these intervals are computed:

Eval([c166, c290], 0) = 23927102, Eval([c290, c414], 0) = 24374685.

Hence, the best cut is predicted to belong to [c290, c414] and the search process is
reduced to the interval [c290, c414]. The above procedure is repeated recursively
until the selected interval consists of single cut only. For our example, the best
cut c296 has been successfully selected by our algorithm. In general, the cut
selected by the algorithm is not necessarily the best one. However, numerous
experiments on different large data sets showed that the cut c∗ returned by the
algorithm is close to the best cut cBest (i.e., W (c∗)

W (cBest)
· 100% is about 99.9%).

10.3.3 Local and Global Search
The algorithm presented above is called also “local search strategy”. In local
search algorithm, we are looking for the best cuts for each attribute separately.
Next, we compare all obtained best cuts to find out the global best one. This is
a typical search strategy for decision tree construction (see [124]).

The approximate measure makes possible to construct “global search strategy”
for best cuts. This strategy becomes helpful if we want to control the computation
time, because it performs both attribute selection and cut selection processes at
the same time.

The global strategy is searching for the best cut over all attributes. At the
beginning, the best cut can be relative to every attribute, hence for each attribute
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Fig. 43. Graph of W (ci) for i ∈ {166, . . . , 414}

we keep the interval in which the best cut can be found (see Theorem 28),
i.e., we have a collection of all potential intervals

Interval Lists = {(a1, l1, r1), (a2, l2, r2), . . . , (ak, lk, rk)}.

Next we iteratively run the following procedure:

– remove the interval I = (a, cL, cR) having highest probability of con-
taining the best cut (using Formula 67);

– divide interval I into smaller ones I = I1 ∪ I2 · · · ∪ Ik;
– insert I1, I2, . . . , Ik to Interval Lists.

These iterative steps can be continued until we have one–element interval or
the time limit of searching algorithm is exhausted. This strategy can be simply
implemented using priority queue to store the set of all intervals, where the
priority of intervals is defined by Formula (67).

10.3.4 Approximate Measures
We presented the approximate discernibility measure with respect to the fully
independent assumption, i.e., distribution of objects from each decision class in
[cL, cR] is independent of the others.

In this section, we consider the problem of searching for approximation of dis-
cernibility measure under “fully dependent assumption” as well as approximate
entropy measure under both independent and dependent assumptions.

The full dependency is based on the assumption that the values x1, . . . , xd are
proportional to M1, . . . ,Md, i.e.,

x1

M1
' x2

M2
' · · · ' xd

Md
.
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Let x = x1 + · · ·+ xd and let t = x
M , we have

x1 ' M1 · t; x2 ' M2 · t; . . . xd ' Md · t, (68)

where t is a real number from [0, 1].

Approximate discernibility measure. The following theorem has been proved in
[84]:

Theorem 30. Under fully independent assumption, the quality of the interval
[cR, cL] can be evaluated by

Eval([cL, cR]) =
W (cL) + W (cR) + conflict([cL, cR])

2
+

[W (cR) −W (cL)]2

8 · conflict([cL, cR])

if |W (cR) −W (cL)| < 2 · conflict([cL, cR]).
Otherwise, it is evaluated by max{W (cL),W (cR)}.

One can see that under both dependent and independent assumptions, the dis-
cernibility measure of best cut in the interval [cR, cL] can be evaluated by the
same component

W (cL) + W (cR) + conflict([cL, cR])
2

and it is extended by the second component Δ, where

Δ =
[W (cR) −W (cL)]2

8 · conflict([cL; cR])
(under fully dependent assumption)

Δ = α ·
√

D2(W (c)) (under fully independent assumption)

for some α ∈ [0, 1].
Moreover, under fully dependent assumption, one can predict the placement

of the best cut. This observation is very useful in the construction of efficient
algorithms.

Approximate entropy measures: Recall that in the standard entropy-based meth-
ods for decision tree induction (see [123]) we need the following notions:

1. Information measure of the set of objects U

Ent(U) = −
d∑

j=1

Nj

N
log

Nj

N
= −

d∑
j=1

Nj

N
(logNj − logN)

= logN − 1
N

d∑
j=1

Nj logNj =
1
N

⎛⎝N logN −
d∑

j=1

Nj logNj

⎞⎠
=

1
N

⎛⎝h(N)−
d∑

j=1

h(Nj)

⎞⎠ ,

where h(x) = x log x.



488 H.S. Nguyen

2. Information Gain over the set of objects U received by the cut (a, c) is
defined by

Gain(a, c;U) = Ent(U)−
(
|UL|
|U | Ent (UL) +

|UR|
|U | Ent (UR)

)
,

where {UL, UR} is a partition of U defined by c. We have to choose such a
cut (a, c) that maximizes the information gain Gain(a, c;U) or minimizes
the entropy induced by this cut.

Ent (a, c;U) =
|UL|
|U | Ent (UL) +

|UR|
|U | Ent (UR)

=
L

N

⎡⎣ 1
L

⎛⎝h(L) −
d∑

j=1

h(Lj)

⎞⎠⎤⎦+
R

N

⎡⎣ 1
R

⎛⎝h(R)−
d∑

j=1

h(Rj)

⎞⎠⎤⎦
=

1
N

⎡⎣h(L)−
d∑

j=1

h(Lj) + h(R) −
d∑

j=1

h(Rj)

⎤⎦ ,
where (L1, . . . , Ld), (R1, . . . , Rd) are class distribution of UL and UR, respec-
tively.

Analogously to the discernibility measure case, the main goal is to predict the
quality of the best cut (in sense of the entropy measure) among those from the
interval [cL, cR], i.e., Ent(a, c;U) = 1

N f(x1, . . . , xd), where

f(x1, . . . , xd) = h(L+x)−
d∑

j=1

h(Lj +xj)+h(R+M −x)−
d∑

j=1

h(Rj +Mj −xj).

We have presented in [84] the approximate entropy measure under both inde-
pendent and dependent assumptions.

– Approximate entropy measure under fully independent assump-
tion: is defined by the average value of entropy of cuts c ∈ (cL, cR). This
value can be evaluated by

Ent(cL, cR) = H(L,M)−
d∑

j=1

H(Lj ,Mj) + H(R,M)−
d∑

j=1

H(Rj ,Mj),

where

H(a, b) =
(a + b)h(a + b)− ah(a)

2b
− 2a + b

4 ln 2
– Approximate entropy measure under fully dependent assumption:

can be defined by the minimum of the following function

f(t) = h(L+M ·t)−
d∑

j=1

h(Lj+Mj ·t)+h(R+M−M ·t)−
d∑

j=1

h(Rj+Mj−Mj ·t)
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for t ∈ [0, 1]. It has been shown in [84] that f ′(t) is increasing in [0, 1]. This
fact can be used to find the value t0 for which f ′(t0) = 0. If such t0 exists, the
function f achieves maximum at t0. Hence, one can predict the the entropy
measure of the best cut in the interval [cL, cR] (under assumption about
strong dependencies between classes) as follows:
• If f ′(1) ≥ 0 then f ′(t) > 0 for any t ∈ (0; 1), i.e., f(t) is increasing

function. Hence, cR is the best cut.
• If f ′(0) ≤ 0 then f ′(t) ≤ 0 for any t ∈ (0; 1), i.e., f(t) is decreasing

function. Hence, cL is the best cut.
• If f ′(0) < 0 < f ′(1) then locate the root t0 of f ′(t) using “Binary Search

Strategy”. Then the best cut in [cL, cR] can be estimated by 1
N f(t0).

10.4 Soft Cuts and Soft Decision Trees

The standard discretization methods and decision tree methods are working with
crisp partitions defined by cuts, which are partitioning the real axis into disjoint
intervals.

Except the computational problem that occurs in large data tables, there is
another ideological problem related to the usage of crisp cuts to object discerning.
This can lead to misclassification of new objects which are very close to the cut
points, and this fact can result in low quality of new object classification.

In this paper, we propose a novel approach based on soft cuts which makes it
possible to overcome the second problem. Decision trees using soft cuts as test
functions are called soft decision trees. The new approach leads to new efficient
strategies in searching for the best cuts (both soft and crisp cuts) using the whole
data. We show some properties of considered optimization measures that allows
us to reduce the size of the searching space. Moreover, we prove that using only
O(logN) simple queries, one can construct soft partitions that are very close to
the optimal one.

In this section, we introduce soft cuts discerning two given values if those
values are far enough from the cut. The formal definition of a soft cut is the
following:

A soft cut is any triple p = 〈a, l, r〉, where a ∈ A is an attribute, l, r ∈ 1
are called the left and right bounds of p (l ≤ r); the value ε = r−l

2 is
called the uncertainty radius of p. We say that a soft cut p discerns pair
of objects x1, x2 that a(x1) < a(x2) if a (x1) < l and a (x2) > r.

The intuitive meaning of p = 〈a, l, r〉 is that there is a real cut somewhere
between l and r. So we are not sure where one can place the real cut in the
interval [l, r]. Hence, for any value v ∈ [l, r] we are not able to check if v is either
on the left side or on the right side of the real cut. Then, we say that the interval
[l, r] is an uncertain interval of the soft cut p. Any normal cut can be treated as
soft cut of radius equal to 0.

Any set of soft cuts splits the real axis into intervals of two categories: the
intervals corresponding to new nominal values and the intervals of uncertain
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Fig. 44. The soft cut

values called boundary regions. The problem of searching for the minimal set of
soft cuts with a given uncertainty radius can be solved in a similar way to the
case of sharp cuts. Some heuristics for this problem are described in the next
section. The problem becomes more complicated if we want to obtain as small
as possible set of soft cuts with the largest radius. We will discuss this problem
in the future. Now we recall some existing rule induction methods for real value
attribute data and their modifications using soft cuts.

Instead of sharp cuts (see previous sections), the soft cuts determine addi-
tionally some uncertainty regions. Assume that P = {p1, p2, . . . , pk} is a set of
soft cuts on attribute a ∈ A, where pi = (a, li, ri); li ≤ ri and ri < li+1for
i = 1, . . . , k − 1. The set of soft cuts P defines on 1 a partition

1 = (−∞, l1) ∪ [l1, r1] ∪ (r1, l2) ∪ · · · ∪ [lk, rk] ∪ (rk,+∞)

and at the same time defines a new nominal attribute aP : U → {0, 1, . . . , k},
such that aP (x) = i if and only if a (x) ∈ (ri, li+1); i = 1, . . . , k. In the fol-
lowing section we are proposing some possible classification methods using soft
discretization. These methods are based on fuzzy set approach, rough set ap-
proach, clustering approach and decision tree approach.

10.4.1 Soft Decision Tree
The test functions defined by traditional cuts can be replaced by soft cuts. We
have proposed two strategies being modifications of the standard classification
method for decision tree with soft cuts [94]. They are called fuzzy decision tree
and rough decision tree.

In fuzzy decision tree method instead of checking the condition a (u) > c we
have to check how strong is the hypothesis that u is on the left or the right
side of the cut (a, c). This condition can be expressed by μL (u) and μR (u),
where μL and μR are the membership function of the left and the right interval
(respectively). The values of these membership functions can be treated as a
probability distribution of u in the node labeled by soft cut (a, c−ε, c+ε). Then
one can compute the probability of the event that object u is reaching a leaf. The
decision for u is equal to decision labeling the leaf with the largest probability.

In the case of rough decision tree, when we are not able to decide if to turn
left or right (the value a(u) is too close to c) we do not distribute the probability
to the children of considered node. We have to compare their answers taking
into account the numbers of objects supported by them. The answer with most
number of supported objects is the decision of test object.
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Overfitting is the situation when the model fits exactly the data but it has
a poor performance on unseen instances. Usually, overfitting is caused by the
presence of noise in data. Most decision tree algorithms perform a MDL9 based
pruning phase after the building phase in which nodes are iteratively pruned to
prevent overfitting.

Soft decision tree is another method to prevent the overfitting problem. This
concept allows efficient abandoning small noise in data.

10.4.2 Searching for Soft Cuts
Recall that we have presented an efficient algorithm for searching for best cuts
using divide and conquer strategy (Algorithm 11). One can modify this algo-
rithm to determine “soft cuts” in large data bases. The modification is based on
changing the stop condition. In every iteration of Algorithm 11, the current inter-
val [Left;Right] is divided equally into k smaller intervals and the best smaller
interval will be chosen as the current interval. In the modified algorithm, one can
either select one of smaller intervals as the current interval or stop the algorithm
and return the current interval as a result.

Intuitively, the divide and conquer algorithm is stopped and returns the in-
terval [cL; cR] as a result if the following conditions hold:

– The class distribution in [cL; cR] is stable, i.e., there is no sub-interval of
[cL; cR] which is considerably better than [cL; cR] itself;

– The interval [cL; cR] is sufficiently small, i.e., it contains a small number of
cuts;

– The interval [cL; cR] does not contain too much objects (because the large
number of uncertain objects cans result in larger decision tree and then the
time of decision tree construction prolongs).

10.4.3 Accuracy of Soft Decision Tree
In this section, we present the accuracy evaluation of soft decision tree approach.
The main goal is to compare the classification accuracy of soft decision tree built
from semi-optimal cuts with other decision tree techniques.

We have implemented three decision tree algorithms called “ENT” (based on
entropy measure, similar to C4.5 [123]), “MD” (based on discernibility measure
[82]) and “MD*”(the soft tree constructed by approximate discernibility mea-
sure). All experiments are done on “small” data set (from STATLOG project
[75]) only, since the first two algorithms handle the data sets that fit in memory.
We also recall the experiment results achieved by SLIQ algorithm (see [70]).

In our experiments, the standard algorithms based on entropy and discerni-
bility measures are implemented without pruning step. The MD* algorithm is
based on approximate discernibility measure (see Formula ((67))), where Δ was
set to 0, i.e.

Eval ([cL; cR]) =
W (cL) + W (cR) + conflict([cL; cR])

2
.

9 MDL: “Minimal Description Length” principle.
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Table 23. The experimental results of different decision tree algorithms on benchmark
data

Data sets #objects×#attr. SLIQ ENT MD MD*

Australian 690 × 14 84.9 85.2 86.2 86.2

German 1000 × 24 - 70 69.5 70.5

Heart 270 × 13 - 77.8 79.6 79.6

Letter 20000 × 16 84.6 86.1 85.4 83.4

SatImage 6435 × 36 86.3 84.6 82.6 83.9

Shuttle 57000 × 9 99.9 99.9 99.9 98.7

We used fuzzy decision tree classification method (described in Sect. 10.4) to
classify new objects. From experimental results we can see that, even MD* al-
gorithm constructs decision tree from approximate measure, its accuracy is still
comparable with other exact measures.

10.4.4 Other Applications of Soft Cuts

Fuzzy Set Approach: In the fuzzy set approach, one can treat the interval [li, ri]
for any i ∈ {1, . . . , k} as a kernel of some fuzzy set Δi. The membership function
fΔi : 1 → [0, 1] is defined as follows:

1. fΔi (x) = 0 for x < li or x > ri+1.
2. fΔi (x) increases from 0 to 1 for x ∈ [li, ri].
3. fΔi (x) decreases from 1 to 0 for x ∈ [li+1, ri+1].
4. fΔi (x) = 1 for x ∈ (ri, li+1).

�

�
�

�
��

�
��

�
� �

�
�

ii − 1 i + 1

li ri li+1 ri+1

1

Fig. 45. Membership functions of intervals

Having defined membership function, one can use the idea of fuzzy graph [160]
to represent the discovered knowledge.

Rough Set Approach: The boundary interval [li, ri] can be treated as uncertainty
region for a real sharp cut. Hence, using rough set approach the intervals (ri, li+1)
and [li, ri+1] are treated as the lower and the upper approximations of any set X .
Hence, we use the following notation La (Xi) = (ri, li+1) and Ua (Xi) = [li, ri+1]
such that (ri, li+1) ⊆ X ⊆ [li, ri+1].
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Fig. 47. Clustering approach

Having approximations of nominal values of all attributes, we can generate an
upper and lower approximation of decision classes by taking a Cartesian prod-
uct of rough sets. For instance, for a set X given by its rough representation
[LB(X),UB(X)] and for a set Y given by the representation [LC(Y ),UC(Y )],
and let B ∩ C = ∅. One can define a rough representation of X × Y by
[LB∪C (X × Y ) ,UB∪C (X × Y )] where

LB∪C (X × Y ) = LB (X)× LC (Y )

and
UB∪C (X × Y ) = UB (X)×UC (Y ) .

Clustering Approach: Any set of soft cuts P defines a partition of real values of
attributes into disjoint intervals, which determines a natural equivalence relation
IND(P) over the set of objects. New objects belonging to the boundary regions
can be classified by applying the rough set membership function to test the
hypothesis that the new object belongs to certain decision class.

One can also apply the idea of clustering. Any set of soft cuts defines a parti-
tion of 1k into k-dimensional cubes. Using rough set approach one can classify
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some of these cubes to be in the lower approximation of a certain set, and they
can be treated as clusters. To classify a new object belonging to any bound-
ary cube one can compare distances from this object to the centers of adjacent
clusters (see Fig. 47).

11 Conclusions

We have presented the approximate Boolean reasoning methodology as an ex-
tension of the original Boolean reasoning scheme. Theoretical foundations of the
proposed method as well as many applications of rough set theory including at-
tribute selection (calculation of reducts), decision rule induction, discretization
and feature extraction have been developed. We also presented some efficient
data mining algorithms based on the approximate Boolean reasoning approach.
Thus, the results of this paper may be considered as belonging to the intersec-
tion of three research domains: the Boolean reasoning methods, rough sets and
data mining.

We would like to emphasize the fact that approximate Boolean reasoning
approach is not only a concrete method for problem solving, but it is a gen-
eral methodology for development of concept approximation heuristics and data
mining solutions. The secret is embedded in the first step where the investi-
gated problem is encoded by a Boolean function. The encoding function creates
the basis for designing different approximate solutions for the same problem.
In many applications there is no need to construct the encoding function, but
the satisfactory knowledge about it facilitates to develop appropriate approxi-
mate algorithms that fulfill some predefined requirements about the quality and
complexity.

The general evaluation of data mining solutions depends on their accuracy,
complexity, description length, interpretability and some other factors. Usually,
the function expressing the dependency is not exactly specified by the expert
and it can be approximated through an interaction. The presented data min-
ing methods (based on the approximate Boolean reasoning methodology) make
the interaction with experts easier by tuning the quality through other features.
This possibility is essential for KDD which is an iterative and interactive pro-
cess of identifying valid, novel, potentially useful, and ultimately understandable
patterns in data [32].

This property has also a close connection with the minimal description length
(MDL) principle, which was introduced by Jorma Rissanen [126], [127] as a
method for inductive reasoning where the success in finding such regularities
can be measured by the model length with which the data can be described.
The methods proposed in this paper suggest a possibility to generalize the MDL
idea by evaluating data mining methods with respect to a combined optimization
criterion over such factors as the accuracy, understandability, description length,
complexity, etc.

Moreover, the flexibility in modeling and designing approximate solutions for
complex concepts is also a valuable property that can be applied to challenging
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problems like “reasoning from sensor measures to perception”, “granular comput-
ing” or “computing with words”.

The investigations on approximate Boolean reasoning refer to a new direc-
tion in computational complexity theory. We have noticed a regular dependency
between hardness in developing accurate approximate algorithms and complex-
ity of the encoding function. We have presented different heuristics for the same
problem for which the better solution requires the heuristic with larger time and
space complexity. The proposed methods can be treated as a step forward in
developing of methods for checking which heuristics can be applied in a given
situation, e.g., using the current possibilities of computer systems, limitations of
the computing time and other available resources.
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Information Systems. In S�lowiński [147], chapter 3, pages 331–362.

[144] A. Skowron and J. Stepaniuk. Tolerance Approximation Spaces. Funda-
menta Informaticae, 27(2-3):245–253, 1996.
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